Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: To evaluate the load-bearing functions of the fibers of the anterior cruciate ligament (ACL) tibial attachment in restraining tibial anterior translation, internal rotation, and combined anterior and internal rotation laxities in a simulated pivot-shift test.
Methods: Twelve knees were tested using a robot. Laxities tested were: anterior tibial translation (ATT), internal rotation (IR), and coupled translations and rotations during a simulated pivot-shift. The kinematics of the intact knee was replayed after sequentially transecting 9 segments of the ACL attachment and fibers entering the lateral gutter, measuring their contributions to restraining laxity. The center of effort (COE) of the ACL force transmitted to the tibia was calculated. A blinded anatomic analysis identified the densest fiber area in the attachment of the ACL and thus its centroid (center of area). This centroid was compared with the biomechanical COE.
Results: The anteromedial tibial fibers were the primary restraint of ATT (84% across 0° to 90° flexion) and IR (61%) during isolated and coupled displacements, except for the pivot-shift and ATT in extension. The lateral gutter resisted 28% of IR at 90° flexion. The anteromedial fibers showed significantly greater restraint of simulated pivot-shift rotations than the central and posterior fibers (P < .05). No significant differences (all <2 mm) were found between the anatomic centroid of the C-shaped attachment and the COE under most loadings.
Conclusions: The peripheral anteromedial fibers were the most important area of the ACL tibial attachment in the restraint of tibial anterior translation and internal rotation during isolated and coupled displacements. These mechanical results matched the C-shaped anteromedial attachment of the dense collagen fibers of the ACL.
Clinical Relevance: The most important fibers in restraining tibial displacements attach to the C-shaped anteromedial area of the native ACL tibial attachment. This finding provides an objective rationale for ACL graft position to enable it to reproduce the physiological path of load transmission for tibial restraint.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.arthro.2019.01.058 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!