Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Artificial intelligence (AI) has made impressive strides recently in interpreting complex images, thanks to improvements in deep learning techniques and increasing computational power. Researchers have started applying these advanced techniques to pathology images, although most efforts have been focused on histopathology. Cytopathology, however, remains the original field of pathology for which AI models for clinical use were successfully commercialized, to assist with automating Papanicolaou test screening. Recent AI efforts have focused on whole slide images of both gynecologic and non-gynecologic cytopathology. This review summarizes the literature and commercial landscape of AI as applied to cytopathology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jasc.2019.03.003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!