Background: The oilseed Camelina sativa is grown for a range of applications, including for biofuel, biolubricants, and as a source of omega-3 fatty acids for the aquaculture feed industry. The seed meal co-product is used as a source of protein for animal feed; however, the low value of the meal hinders profitability and more widespread application of camelina. The nutritional quality of the seed meal is largely determined by the abundance of specific seed storage proteins and their amino acid composition. Manipulation of seed storage proteins has been shown to be an effective means for either adjustment of nutritional content of seeds or for enhancing accumulation of high-value recombinant proteins in seeds.

Results: CRISPR/Cas9 gene editing technology was used to generate deletions in the first exon of the three homoeologous genes encoding the seed storage protein CRUCIFERIN C (CsCRUC), creating an identical premature stop-codon in each and resulting in a CsCRUC knockout line. The mutant alleles were detected by applying a droplet digital PCR drop-off assay. The quantitative nature of this technique is particularly valuable when applied to polyploid species because it can accurately determine the number of mutated alleles in a gene family. Loss of CRUC protein did not alter total seed protein content; however, the abundance of other cruciferin isoforms and other seed storage proteins was altered. Consequently, seed amino acid content was significantly changed with an increase in the proportion of alanine, cysteine and proline, and decrease of isoleucine, tyrosine and valine. CsCRUC knockout seeds did not have changed total oil content, but the fatty acid profile was significantly altered with increased relative abundance of all saturated fatty acids.

Conclusions: This study demonstrates the plasticity of the camelina seed proteome and establishes a CRUC-devoid line, providing a framework for modifying camelina seed protein composition. The results also illustrate a possible link between the composition of the seed proteome and fatty acid profile.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6611024PMC
http://dx.doi.org/10.1186/s12870-019-1873-0DOI Listing

Publication Analysis

Top Keywords

seed storage
16
seed
12
seed protein
12
storage proteins
12
camelina sativa
8
seed meal
8
amino acid
8
cscruc knockout
8
fatty acid
8
acid profile
8

Similar Publications

A novel transcription factor OsMYB73 affects grain size and chalkiness by regulating endosperm storage substances' accumulation-mediated auxin biosynthesis signalling pathway in rice.

Plant Biotechnol J

December 2024

State Key Laboratory of Rice Biology (State Key Laboratory of Rice Biology and Breeding), China-IRRI Joint Research Center on Rice Quality and Nutrition, Key Laboratory of Rice Biology and Genetics Breeding of Ministry of Agriculture, China National Center for Rice Improvement, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China.

Enhanced grain yield and quality traits are everlasting breeding goals. It is therefore of great significance to uncover more genetic resources associated with these two important agronomic traits. Plant MYB family transcription factors play important regulatory roles in diverse biological processes.

View Article and Find Full Text PDF

The deterioration of meat products is significantly influenced by the oxidation of lipids. The addition of antioxidants is one of the accepted methods to retard lipid oxidation. The goal of this research was to encapsulate tomato powder with chia seed mucilage by lyophilization.

View Article and Find Full Text PDF

Sesbania grandiflora, a fast-growing shrub from the Fabaceae family, is extensively researched for its therapeutic properties. Despite its highly valued medicinal properties, there have been no reports on exploring the proteome of Sesbania grandiflora. The present study aims to address this gap by investigating the proteomic profile of Sesbania grandiflora seeds with a primary focus on identifying storage proteins.

View Article and Find Full Text PDF

The current research focused on examining the effect of a coating made from Balangu seed mucilage (TSM-BM) and gelatin (Ge), with varying concentrations of dill essential oil (DEO) (0 %, 1 %, and 2 %) and zinc oxide nanoparticles (ZnO-np) (0 % and 0.5 %), on the quality characteristics of cherries stored at 4 °C over intervals of 0, 4, 7, 11, 18, and 25 days. The study noted that the application of this coating, particularly when combined with DEO and ZnO-np, significantly reduced the rate of changes in several parameters, including weight loss, firmness, titratable acidity, pH, total soluble solids, ascorbic acid, total anthocyanin content, total phenolic content, and antioxidant activity (p˂0.

View Article and Find Full Text PDF

Shrub encroachment can alter the structure and function of grassland ecosystems, leading to their degradation. Therefore, population regeneration dynamics after shrub encroachment on the influence of grassland should not be ignored. , as a pioneer species, has significantly encroached with large areas on the Qinghai-Tibetan Plateau (QTP) due to climate change and over-grazing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!