Effect of pH on the reaction between naringenin and methylglyoxal: A kinetic study.

Food Chem

Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, 2200 Denmark. Electronic address:

Published: November 2019

Methylglyoxal (MGO) is a highly reactive ɑ-dicarbonyl compound that may adversely impact food quality and human health by modifying proteins. The kinetics of the reaction of naringenin with MGO was studied at pH 6-8 and 37 °C by UV-Vis spectrophotometry and reaction products were characterized by liquid chromatography-mass spectrometry (LC-MS/MS). The apparent second order rate constant (k) increased at pH above the lowest pKa value of naringenin, indicating deprotonated naringenin as the main reactant. A Lederer-Manasse type reaction mechanism is suggested, with dehydration of the MGO-dihydrate as a rate determining step. The quantitative data obtained in the present study was used to simulate the competitive reaction between MGO and nucleophilic amino acid residues (Lys, Arg and Cys) and naringenin in milk. It is predicted that naringenin will be able to efficiently trap MGO during storage of milk, although the reversible trapping of MGO by Cys residues is initially kinetically favourable.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2019.125086DOI Listing

Publication Analysis

Top Keywords

reaction naringenin
8
reaction
5
mgo
5
naringenin
5
naringenin methylglyoxal
4
methylglyoxal kinetic
4
kinetic study
4
study methylglyoxal
4
methylglyoxal mgo
4
mgo highly
4

Similar Publications

Oncostatin M (OSM) plays a crucial role in diverse inflammatory reactions. Although the food bioactive compound naringenin (NAR) exerts various useful effects, including antitussive, anti-inflammatory, hepatoprotective, renoprotective, antiarthritic, antitumor, antioxidant, neuroprotective, antidepressant, antinociceptive, antiatherosclerotic, and antidiabetic effects, the modulatory mechanism of NAR on OSM expression in neutrophils has not been specifically reported. In the current work, we studied whether NAR modulates OSM release in neutrophil-like differentiated (d)HL-60 cells.

View Article and Find Full Text PDF

Sustainable management of agri-food product safety presents a major challenge requiring extensive action to ensure food safety and consumer health. The pursuit of environmentally friendly solutions that will constitute an alternative to the chemical compounds commonly used in agriculture and the food industries is one of the most important problems. One solution is plant extracts containing various biologically active compounds and exhibiting antimicrobial activity.

View Article and Find Full Text PDF

Two routes to assemble the complete tricyclic core of alopecurone C are described. In the first-generation route, an efficient synthesis of the "eastern" half of the target, including a decagram-scale rhodium-catalyzed C-H insertion reaction, was developed. When this route proved intractable for assembling the final flavanone ring, a successful second-generation route was developed from a flavanone precursor (naringenin) employing a later stage C-H insertion.

View Article and Find Full Text PDF

Beeswax-based nanoconstructs enriched dual responsive hydrogel for diabetic foot ulcers in streptozotocin-induced diabetic rats.

Int J Biol Macromol

December 2024

Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed University), M. B. Road, New Delhi 110062, India. Electronic address:

Diabetic foot ulcer (DFU) is a complicated pathophysiological process, and there is now no recognized treatment. Hyperglycemia, neuropathy, impaired angiogenesis, reactive oxygen species, and advanced glycation end products construct the distinctive wound environment of diabetic wounds. This study aimed to develop naringenin-ferulic acid beeswax-based nanoconstructs enriched dual-responsive hydrogel (NAR-FA NLC HG) for topical application for DFU.

View Article and Find Full Text PDF

Polyphenol oxidase gene editing changed the flavonoid composition and browning process of litchi (Litchi chinensis Sonn.) callus.

Gene

February 2025

Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; National Key Laboratory for Tropical Crop Breeding, Haikou, Hainan 571101, China. Electronic address:

Postharvest pericarp browning, caused primarily by the enzymatic oxidation of phenols, reduces the shelf life and market value of litchi fruit and is considered a major limitation for the development of the litchi industry. Previous studies have shown that polyphenol oxidase (PPO) is a key enzyme and that flavonoids are important substrates for enzymatic browning; however, direct evidence is still lacking. This study investigated the differences in the browning process among the wild type (WT) and four PPO gene-edited litchi calli to verify the function of PPO in the browning of litchi tissues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!