Infectious hematopoietic necrosis virus (IHNV) is the causative agent for a lethal salmonid disease. In this study, we surveyed the IHNV's epidemiology, diversity and the origin of infection in Iran. Phylogenetic analysis revealed that Iranian isolates belonged to one of the two lineages of E genogroup. Subsequently, a combination of phylogenetic, antigenic and structural analysis was performed to investigate the evolution of E genogroup lineages. Site-specific analysis of the viral glycoprotein showed different co-evolving and positively selected sites in each lineage. Most of these sites were mapped to the predicted antigenic patches of the glycoprotein. Further characterization revealed E lineages can be differentiated, in part, by specific mutations at positions 91 and 130, which are located in the structurally flexible regions of the glycoprotein, suggesting a key adaptative role for these sites. These data may assist in better monitoring the emerging isolates in regions infected to IHNV from E genogroup.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.virol.2019.06.012DOI Listing

Publication Analysis

Top Keywords

infectious hematopoietic
8
hematopoietic necrosis
8
necrosis virus
8
virus ihnv
8
iranian isolates
8
molecular evolution
4
evolution selection
4
selection pressure
4
analysis
4
pressure analysis
4

Similar Publications

β-Glucan reprograms neutrophils to promote disease tolerance against influenza A virus.

Nat Immunol

January 2025

Department of Medicine, Department of Pathology, Department of Microbiology & Immunology, McGill University Health Centre, McGill International TB Centre, Meakins Christie Laboratories, McGill University, Montréal, Québec, Canada.

Disease tolerance is an evolutionarily conserved host defense strategy that preserves tissue integrity and physiology without affecting pathogen load. Unlike host resistance, the mechanisms underlying disease tolerance remain poorly understood. In the present study, we investigated whether an adjuvant (β-glucan) can reprogram innate immunity to provide protection against influenza A virus (IAV) infection.

View Article and Find Full Text PDF

After allogeneic HSCT (allo-HSCT), the diversity of the intestinal microbiota significantly decreases. The changes can be rapid and are thought to be caused by chemotherapy, antibiotics, or intestinal inflammation. Most patients are exposed to prophylactic and therapeutic antibiotics during neutropenia and several patients are colonized by ESBL bacteria.

View Article and Find Full Text PDF

A Patient With NEMO Deficiency, Disseminated M. szulgai, and Post-HSCT Inflammatory Disease.

Pediatr Transplant

February 2025

Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA.

Background: Disseminated mycobacterium poses a significant risk for patients with NEMO deficiency. Hematopoietic stem cell transplant (HSCT) corrects the NEMO defect in hematopoietic cells thus treating the immunodeficiency.

Methods: We present a patient with NEMO deficiency who successfully underwent HSCT despite a disseminated Mycobacterium szulgai infection.

View Article and Find Full Text PDF

Background: Survivors of childhood cancer (CCS) and hematopoietic stem cell transplantation (HSCT) recipients are at increased risk of human papillomavirus (HPV)-associated malignancies. Although HPV vaccination is recommended for these groups, parental acceptance remains uncertain.

Procedure: We recruited caregivers of female CCS/HSCT aged ≥9 years from the Shanghai Children's Medical Center (SCMC) vaccination clinic.

View Article and Find Full Text PDF

BMT CTN 1506 ("MORPHO"; NCT02997202) was a randomized phase 3 study of gilteritinib compared to placebo as maintenance therapy after hematopoietic stem cell transplantation (HCT) for patients with FLT3-ITD-mutated acute myeloid leukemia (AML). A key secondary endpoint was to determine the impact on survival of pre- and/or post-HCT measurable residual disease (MRD), as determined using a highly sensitive assay for FLT3-ITD mutations. Generally, gilteritinib maintenance therapy was associated with improved relapse-free survival (RFS) for participants with detectable peri-HCT MRD, whereas no benefit was evident for those lacking detectable MRD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!