Film coating of pharmaceutical dosage forms, such as tablets and pellets, can be used to tailor the drug release profile. With that regard, a uniform coating thickness of a single tablet (intra-tablet), all tablets (inter-tablet) and subsequent batches (inter-batch) is crucial. We present a method comparison between in-line (optical coherence tomography and near-infrared spectroscopy) and well-established off-line (height-, weight- and diameter-gain) approaches to determining the coating thickness of tablets. We used single tablets drawn during a commercial coating process. Comparing the low intra- and high inter-tablet coating variability indicated that the tablets had a broad distribution of spray zone passes but at a random tablet orientation. Even at the end of the coating process at a mean coating thickness of about 70 µm, the inter-tablet standard deviation was about 9 µm or 13% relative standard deviation. Determining correlations between the methods identified the factors that contribute to the measurement uncertainty and bias for each method. Ultimately, we aimed to establish that in-line methods match or even surpass the conventional off-line reference methods in terms of accuracy and precision of coating thickness measurement.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejpb.2019.06.021 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold of Zhengzhou University, Zhengzhou 450000, China.
Planar 1D photonic crystals (1DPhCs), owing to their photonic bandgaps (PBGs) formed by unique structural interference, are widely utilized in light protection applications. Multifunctional coatings that integrate various light management functions are highly desired. In this study, we present the fabrication of dual-PBG 1DPhCs with high reflectance in both the blue and near-infrared (NIR) regions.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
The adoption of carbon capture, utilization, and storage (CCUS) technology is increasingly prevalent, driven by the global initiative to conserve energy and reduce emissions. Nevertheless, CCUS has the potential to induce corrosion in equipment, particularly in high-pressure environments containing carbon dioxide (CO). Therefore, anti-corrosion protection is necessary for the metal utilized for CO production and storage equipment.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemical and Biomolecular Engineering, Lehigh University, 124 E. Morton Street, Bethlehem, Pennsylvania 18015, United States.
Quantum dot (QD) light-emitting diodes (QLEDs) are promising candidates for next-generation displays because of their high efficiency, brightness, broad color gamut, and solution-processability. Large-scale solution-processing of electroluminescent QLEDs poses significant challenges, particularly concerning the precise control of the active layer's thickness and uniformity. These obstacles directly impact charge transport, leading to current leakage and reduced overall efficiency.
View Article and Find Full Text PDFThe monolithic fabrication of passive, nonlinear, and active functionalities on a single chip is highly desired in the wake of the development and commercialization of integrated photonic platforms. However, the co-integration of diverse functionalities has been challenging as each platform is optimized for specific applications, typically requiring different structures and fabrication flows. In this article, we report on a monolithic and complementary metal-oxide-semiconductor CMOS-compatible hybrid wafer-scale photonics platform that is suitable for linear, nonlinear, and active photonics based on moderate confinement 0.
View Article and Find Full Text PDFThis paper demonstrates a customized quartz tuning fork (QTF) coated with the titanium carbide (TiCT) MXene film that can effectively enhance the sensitivity of light-induced thermoelastic spectroscopy (LITES). The MXene film is coated at the root of the customized QTF. The film area is proven to have little impact on resonance frequency, bandwidth, quality factor, and amplitude of the second harmonic signal (2) based on the fundamental flexural mode.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!