Inflammasomes: Intracellular mediators of immune defense.

Arch Biochem Biophys

The Department of Biochemistry & Molecular Biology, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada. Electronic address:

Published: July 2019

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.abb.2019.07.001DOI Listing

Publication Analysis

Top Keywords

inflammasomes intracellular
4
intracellular mediators
4
mediators immune
4
immune defense
4
inflammasomes
1
mediators
1
immune
1
defense
1

Similar Publications

Angiogenesis, a key point in the association of gut microbiota and its metabolites with disease.

Eur J Med Res

December 2024

Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.

The gut microbiota is a complex and dynamic ecosystem that plays a crucial role in human health and disease, including obesity, diabetes, cardiovascular diseases, neurodegenerative diseases, inflammatory bowel disease, and cancer. Chronic inflammation is a common feature of these diseases and is closely related to angiogenesis (the process of forming new blood vessels), which is often dysregulated in pathological conditions. Inflammation potentially acts as a central mediator.

View Article and Find Full Text PDF
Article Synopsis
  • - The study explores the potential of chlorquinaldol (CQ), an antimicrobial agent, as a specific inhibitor of the NLRP3 inflammasome, which is linked to various inflammatory diseases, highlighting its promise for drug repurposing.
  • - CQ effectively suppresses NLRP3 inflammasome activation in both mouse and human macrophages primarily by blocking the interaction between NLRP3 and ASC, while having minimal impact on other inflammasomes like NLRC4 and AIM2.
  • - In vivo tests showed that CQ significantly improves conditions in mouse models of LPS-induced peritonitis, DSS-induced colitis, and MSU-induced gouty arthritis, suggesting its therapeutic potential for treating NLRP3-related
View Article and Find Full Text PDF

Sepsis-associated acute kidney injury (SA-AKI) is a common and serious complication with high morbidity and mortality. The pathophysiology of SA-AKI is complex. The underlying mechanisms of SA-AKI remain unclear, and effective therapeutic strategies are limited.

View Article and Find Full Text PDF

Zinc homeostasis regulates caspase activity and inflammasome activation.

PLoS Pathog

December 2024

Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China.

Inflammasome activation drives pyroptotic cell death and the release of inflammatory cytokines, and many diseases involve its overactivation. Zinc is essential for all organisms as a trace element, but its functions in innate immunity remain undefined. Here, we reported that Zn2+ inhibits caspase-1 to hinder inflammasome activation.

View Article and Find Full Text PDF

METTL4-Mediated Mitochondrial DNA N6-Methyldeoxyadenosine Promoting Macrophage Inflammation and Atherosclerosis.

Circulation

December 2024

Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, China. (L.Z., X.C., X.H., Y.T., J.M., Xinyu Li, H.W., M.C., Y.Z., M.D., Q.Y., D.H., H.J., Xuesong Li, H.C.).

Background: Mitochondrial dysfunction is a key factor in the development of atherogenesis. METTL4 (methyltransferase-like protein 4) mediates N6- methyldeoxyadenosine (6mA) of mammalian mitochondrial DNA (mtDNA). However, the role of METTL4-mediated mitoepigenetic regulation in atherosclerosis is still unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!