Graphene, since its successful exfoliation and characterisation has been continuously drawing extensive research interests due to its potential for a broad range of applications ranging from energy, microelectronics, through polymer fillers and sensors to environmental and biomedical devices. Exploitation of its unique chemical and physical properties for the manufacturing of functional materials, requires careful structural control and scaling-up into three-dimensional morphologies. Here, a facile method is established to create and control the bottom-up self-assembly of graphene oxide nano-sheets via unprecedented integration with a highly versatile bio-ingredient, the filamentous bacteriophage M13, into hierarchical, three-dimensional, porous sponges of GraPhage13. This study explores the interplay of the GraPhage13 structure formation and studies the mechanisms that give rise to the controllable self-assembly. The straightforward fabrication of robust hierarchical micro-nano-architectures further lays a platform for applications in energy storage and conversion, catalysis and sensing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9nr03670a | DOI Listing |
Small Methods
January 2025
Fujian Provincial Key Laboratory of Functional Marine Sensing Materials, College of Material and Chemical Engineering, Minjiang University, Fuzhou, 350108, P. R. China.
The cost-effective and scalable synthesis and patterning of soft nanomaterial composites with improved electrical conductivity and mechanical stretchability remains challenging in wearable devices. This work reports a scalable, low-cost fabrication approach to directly create and pattern crumpled porous graphene/NiS nanocomposites with high mechanical stretchability and electrical conductivity through laser irradiation combined with electrodeposition and a pre-strain strategy. With modulated mechanical stretchability and electrical conductivity, the crumpled graphene/NiS nanocomposite can be readily patterned into target geometries for application in a standalone stretchable sensing platform.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
College of Electronics and Information, Qingdao University, Qingdao 266071, China.
3D multifunctional wearable piezoresistive sensors have aroused extensive attention in the fields of motion detection, human-computer interaction, electronic skin, etc. However, current research mainly focuses on improving the foundational performance of piezoresistive sensors, while many advanced demands are often ignored. Herein, a 3D piezoresistive sensor based on rGO@C-ZIF-67@PU is fabricated via high temperature carbonization and a solvothermal reduction method.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Humboldt-Universität zu Berlin, Department of Chemistry, Unter den Linden 6, 10117, Berlin, Germany.
Multifunctional ortho-quinones are required for the formation of thiol-catechol-connectivities (TCC) but can be delicate to handle. We present the electrochemical oxidation of the dipeptide DiDOPA, achieving up to 92 % conversion efficiency of the catechols to ortho-quinones. Graphite and stainless steel could be employed as cost-efficient electrodes.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, CAEA Innovation Center of Nuclear Environmental Safety Technology, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China.
With the development of the nuclear industry, the direct discharge of uranium-containing wastewater has become increasingly harmful to the environment. A novel graphene oxide-supported and phosphoric-crosslinked chitosan gel bead (C-PGCB) with excellent uranium uptake capability was successfully fabricated to treat uranium-containing wastewater. The experimental results showed that the introduction of PO and CO bonds through phosphoric acid crosslinking could greatly improve the capturing ability of chitosan-based materials, which could reach 97.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2024
Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, China. Electronic address:
Traditional cancer therapies, such as chemotherapy, often lack specificity, resulting in severe toxic side effects and limited therapeutic efficacy. There is an urgent need to develop innovative multifunctional nanomedicine carriers that integrate precise diagnosis, targeted therapy, real-time monitoring, and the synergistic effects of multiple therapeutic approaches. In this study, a composite nanodrug delivery system (GO-HA-Ce6-GNRs) based on graphene oxide (GO) was innovatively prepared, which was functionalized with the targeting molecule hyaluronic acid (HA), the photosensitizer chlorin e6 (Ce6), and the photothermal material gold nanorods (GNRs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!