The lanthanide directed self-assembly of chiral amphiphilic 2,6-pyridinedicarboxylic acid based ligands 1 and 2 with various Ln(CFSO) (Ln = Tb, Sm, Lu, Dy) salts was studied in CHCN and evaluated with the expected 1 : 3 and 1 : 1 Ln : Ligand species forming in solution. Ligand chirality was retained and transferred, as depicted by circular dichroism (CD) and circularly polarised luminescence (CPL) measurements (for Tb and Sm), to the lanthanide centre upon complexation with high dissymmetry factor values for the Sm complexes obtained (g = -0.44 and 0.29 and 0.45 and -0.23 for the G→H and the G→H transitions of Sm·1 and Sm·2, respectively). The ability of the complexes to form stable Langmuir monolayers at the air-water interface was also established while Langmuir-Blodgett films of Tb·L and Sm·L exhibited lanthanide luminescent emission.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9dt02003a | DOI Listing |
Molecules
January 2025
School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
Developing a new type of circularly polarized luminescent active small organic molecule that combines high fluorescence quantum yield and luminescence dissymmetric factor in both solution and solid state is highly challenging but promising. In this context, we designed and synthesized a unique triarylborane-based [2.2]paracyclophane derivative, , in which an electron-accepting [(2-dimesitylboryl)phenyl]ethynyl group and an electron-donating -diphenylamino group are introduced into two different benzene rings of [2.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
College of Electronic and Electrical Engineering, Henan Normal University, Xinxiang 453600, China.
A novel common-aperture miniaturized antenna with wideband and dual-polarized characteristics is proposed, which consists of a circularly polarized (CP) and a linearly polarized (LP) antenna. The circularly polarized antenna stacked on the upper layer adopts asymmetrical ground and introduces the patch and T-type feed network. On this basis, the meshed reflector structure, which also works as a ground plane for the LP antenna, is added to reduce the influence on circular polarization and achieve directional radiation.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China.
Artificial microstructures, especially metamaterials, have garnered increasing attention in numerous applications due to their rich and distinctive properties. Starting from the principle of multi-beam interference, we have theoretically devised a beam configuration consisting of six symmetrically distributed coherent beams to generate two-dimensional microstructures with diverse shapes of unitcells under different polarization combinations. In particular, a split-ring metamaterial template is achieved with two adjacent circularly and four linearly polarized beams with such single-step holographic interferometry.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
Modulation of optical properties through smart protein matrices is exemplified by a few examples in nature such as rhodopsin (absorption wavelength tuning) and the green fluorescence protein (emission), but in general, the scope found in nature for the matrix-controlled photofunctions remains rather limited. In this review, we present cyclophane-based supramolecular host-guest complexes for which electronic interactions between the cyclophane host and mostly planar aromatic guest molecules can actively modulate excited-state properties in a more advanced way involving both singlet and triplet excited states. We begin by highlighting photofunctional host-guest systems for on-off fluorescence switching and chiroptical functions using bay-functionalized perylene bisimide cyclophanes.
View Article and Find Full Text PDFPNAS Nexus
January 2025
The Harrison M. Randall Laboratory of Physics, University of Michigan, Ann Arbor, MI 48109-1040, USA.
The direct, ultrafast excitation of polar phonons with electromagnetic radiation is a potent strategy for controlling the properties of a wide range of materials, particularly in the context of influencing their magnetic behavior. Here, we show that, contrary to common perception, the origin of phonon-induced magnetic activity does not stem from the Maxwellian fields resulting from the motion of the ions themselves or the effect their motion exerts on the electron subsystem. Through the mechanism of electron-phonon coupling, a coherent state of circularly polarized phonons generates substantial non-Maxwellian fields that disrupt time-reversal symmetry, effectively emulating the behavior of authentic magnetic fields.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!