Semiconductor Quantum Dots: An Emerging Candidate for CO Photoreduction.

Adv Mater

Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.

Published: September 2019

As one of the most critical approaches to resolve the energy crisis and environmental concerns, carbon dioxide (CO ) photoreduction into value-added chemicals and solar fuels (for example, CO, HCOOH, CH OH, CH ) has attracted more and more attention. In nature, photosynthetic organisms effectively convert CO and H O to carbohydrates and oxygen (O ) using sunlight, which has inspired the development of low-cost, stable, and effective artificial photocatalysts for CO photoreduction. Due to their low cost, facile synthesis, excellent light harvesting, multiple exciton generation, feasible charge-carrier regulation, and abundant surface sites, semiconductor quantum dots (QDs) have recently been identified as one of the most promising materials for establishing highly efficient artificial photosystems. Recent advances in CO photoreduction using semiconductor QDs are highlighted. First, the unique photophysical and structural properties of semiconductor QDs, which enable their versatile applications in solar energy conversion, are analyzed. Recent applications of QDs in photocatalytic CO reduction are then introduced in three categories: binary II-VI semiconductor QDs (e.g., CdSe, CdS, and ZnSe), ternary I-III-VI semiconductor QDs (e.g., CuInS and CuAlS ), and perovskite-type QDs (e.g., CsPbBr , CH NH PbBr , and Cs AgBiBr ). Finally, the challenges and prospects in solar CO reduction with QDs in the future are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.201900709DOI Listing

Publication Analysis

Top Keywords

semiconductor qds
16
semiconductor quantum
8
quantum dots
8
qds
8
semiconductor
6
dots emerging
4
emerging candidate
4
photoreduction
4
candidate photoreduction
4
photoreduction critical
4

Similar Publications

The advancement of photocatalytic technology for solar-driven hydrogen (H2) production remains hindered by several challenges in developing efficient photocatalysts. A key issue is the rapid recombination of charge carriers, which significantly limits the light-harvesting ability of materials like BiOCl and Cu2SnS3 quantum dots (CTS QDs), despite the faster charge mobility and quantum confinement effect, respectively. Herein, a BiOCl/CTS (BCTS) heterostructure was synthesized by loading CTS QDs onto BiOCl 2D nanosheets (NSs), that demonstrated excellent photocatalytic activity under visible light irradiation.

View Article and Find Full Text PDF

Quantum dots for biosensing: Classification and applications.

Biosens Bioelectron

January 2025

Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona, 08193, Spain; Catalan Institution for Research and Advanced Studies (ICREA) Passeig de Lluís Companys, 23, Barcelona, 08010, Spain. Electronic address:

Quantum dots (QDs) are the smallest nanomaterials (2-10 nm), with unique optical and electronic properties. Thanks to these properties, QDs have been standing during the last years as signal tags for different applications, including bioimaging, fluorescent biosensors and electrochemical assays. In this review, we explore the current state-of-the art on these nanomaterials, differentiating them between semiconductor and carbon-based QDs.

View Article and Find Full Text PDF

"Popping the Ion-Basket": Enhancing Thermoelectric Performance of Conjugated Polymers by Blending with Latently Dissociable Perovskite Quantum Dots.

Adv Sci (Weinh)

January 2025

SKKU Advanced Institute of Nanotechnology (SAINT) and Department of Nano Science and Technology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.

A novel additive method to boost the Seebeck coefficient of doped conjugated polymers without a significant loss in electrical conductivity is demonstrated. Perovskite (CsPbBr) quantum dots (QDs) passivated by ligands with long alkyl chains are mixed with a conjugated polymer in a solution phase to form polymer-QD blend films. Solution sequential doping of the blend film with AuCl solution not only doped the conjugated polymer but also decomposed the QDs, resulting in a doped conjugated polymer film embedded with separated ions dissociated from the QDs.

View Article and Find Full Text PDF

Quantum Dot Luminescence Microspheres Enable Ultra-Efficient and Bright Micro-LEDs.

Adv Mater

January 2025

Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China.

Quantum dot (QD)-converted micrometer-scale light-emitting diodes (micro-LEDs) are regarded as an effective solution for achieving high-performance full-color micro-LED displays because of their narrow-band emission, simplified mass transfer, facile drive circuits, and low cost. However, these micro-LEDs suffer from significant blue light leakage and unsatisfactory electroluminescence properties due to the poor light conversion efficiency and stability of the QDs. Herein, the construction of green and red QD luminescence microspheres with the simultaneously high conversion efficiency of blue light and strong photoluminescence stability are proposed.

View Article and Find Full Text PDF

Erythropoietin (EPO)-induced cellular signaling through the EPO receptor (EPOR) is a fundamental pathway for the modulation of cellular behavior and activity. In our previous work, we showed in primary human astrocytes that the multivalent display of EPO on the surface of semiconductor quantum dots (QDs) mediates augmented JAK/STAT signaling, a concomitant 1.8-fold increase in the expression of aquaporin-4 (AQPN-4) channel proteins, and a 2-fold increase in the AQPN-4-mediated water transport activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!