We report that fluoroquinolone-resistant Escherichia coli are found in feces of 8.8% of healthy women, with most bacteria belonging to pandemic multidrug-resistant ST131-H30R or ST1193 clonal groups. Moreover, these highly uropathogenic clonal groups demonstrate an especially prolonged gut persistence and high rate of bacteriuria without documented urinary tract infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7931843PMC
http://dx.doi.org/10.1093/cid/ciz547DOI Listing

Publication Analysis

Top Keywords

fluoroquinolone-resistant escherichia
8
escherichia coli
8
healthy women
8
clonal groups
8
pandemic uropathogenic
4
uropathogenic fluoroquinolone-resistant
4
coli enhanced
4
enhanced ability
4
ability persist
4
persist gut
4

Similar Publications

Objective: To investigate the distribution characteristics of common bacteria and changes in antimicrobial resistance in intensive care unit (ICU) patients in 58 hospitals in Hubei Province from 2020-2023.

Method: The antimicrobial agents for antimicrobial susceptibility tests was selected based on the 2022 China Antimicrobial Resistance surveillance system (CARSS) technical scheme, and the specific experimental operation was based on the requirements of the CLSI M02 and M07 documents. The commercial instruments were used following the manufacturer's instructions.

View Article and Find Full Text PDF
Article Synopsis
  • Fluoroquinolone-resistant (FQs-R) E. coli from patients undergoing prostate biopsies are increasingly common, raising concerns about using FQs for infection prevention.
  • A study between 2016 and 2018 found that 61.06% of patients carried FQs-R Enterobacterales, primarily E. coli, with varying resistance profiles linked to specific genetic mutations.
  • The research highlighted that these resistance mechanisms, including mutations in the gyrA and parC genes as well as certain plasmid-mediated resistance genes, significantly elevate the Minimum Inhibitory Concentrations (MICs), posing a risk for post-procedure infections.
View Article and Find Full Text PDF

Fluoroquinolone-resistant sequence type (ST)1193 is a profound, emerging lineage associated with systemic, urinary tract and neonatal infections. Humans, companion animals and the environment are reservoirs for ST1193, which has been disseminated globally. Following its detection in 2007, ST1193 has been identified repeatedly amongst fluoroquinolone-resistant clones in Australia.

View Article and Find Full Text PDF

Background: Antibiotic prescription practices differ between countries, influencing regional antimicrobial resistance prevalence. However, comparisons of clonal diversity among resistant bacteria in countries with different prescribing practices are rare. The rise of fluoroquinolone-resistant (FQREC), often multidrug-resistant, exacerbates global antibiotic resistance.

View Article and Find Full Text PDF

Plasmid-mediated antibiotic-resistant bacteria's transmission is fatal and a major threat to public health. This study aimed to clarify the presence of plasmid-mediated quinolone resistance(PMQR)genes in extended-spectrum β-lactamase(ESBL)-producing or/and mcr-harbouring colistin(COL)-resistant Escherichia coli(ESBL-COL-EC)isolates from Vietnamese and Japanese chicken meat. Resistance towards ciprofloxacin(CIP)was examined in 308 ESBL-COL-EC isolates; CIP-resistant ESBL-COL-EC isolates were examined for the PMQR gene.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!