Precision small animal radiotherapy research is a young emerging field aiming to provide new experimental insights into tumor and normal tissue models in different microenvironments, to unravel complex mechanisms of radiation damage in target and non-target tissues and assess efficacy of novel therapeutic strategies. For photon therapy, modern small animal radiotherapy research platforms have been developed over the last years and are meanwhile commercially available. Conversely, for proton therapy, which holds potential for an even superior outcome than photon therapy, no commercial system exists yet. The project SIRMIO (Small Animal Proton Irradiator for Research in Molecular Image-guided Radiation-Oncology) aims at realizing and demonstrating an innovative portable prototype system for precision image-guided small animal proton irradiation, suitable for installation at existing clinical treatment facilities. The proposed design combines precise dose application with multi-modal anatomical image guidance and verification of the actual treatment delivery. This manuscript describes the status of the different components under development, featuring a dedicated beamline for degradation and focusing of clinical proton beams, along with novel detector systems for imaging and range verification. The foreseen workflow includes pre-treatment proton transmission imaging, complemented by ultrasonic tumor localization, for treatment planning and position verification, followed by image-guided delivery with range verification by means of ionoacoustics (for pulsed beams) and positron-emission-tomography (PET, for continuous beams). The proposed compact and cost-effective system promises to open a new era in small animal proton therapy research, contributing to the basic understanding of radiation action to identify areas of potential breakthroughs for future translation into innovative clinical strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1080/0284186X.2019.1630752DOI Listing

Publication Analysis

Top Keywords

small animal
24
animal proton
16
proton irradiation
8
animal radiotherapy
8
photon therapy
8
proton therapy
8
range verification
8
proton
7
animal
6
small
5

Similar Publications

The aim of the study was to determine the thickness of choroidal layers in mixed breed dogs suffering from retinal atrophy (RA) and showing symptoms of progressive retinal atrophy (PRA), with the use of SD-OCT. The study was performed on 50 dogs divided into two groups: 25 dogs diagnosed with retinal atrophy (RA) with PRA symptoms aged 1.5-14 years and 25 healthy dogs aged 2-12 years.

View Article and Find Full Text PDF

Infectious keratoconjunctivitis is an infectious disease that negatively affects animal welfare causing systemic or local clinical signs in small ruminants and causes significant economic losses in herds. It is important to determine the etiologic agent causing the infection in the development of the protection and control strategies against the disease. The aim of this study was to determine the presence of infectious keratoconjunctivitis cases in small ruminants raised in Siirt province in Türkiye.

View Article and Find Full Text PDF

Background: The Japanese quail () is a small migratory bird whose main habitats are located in East Asia, Russia, China, Japan, Korea, and India. The Japanese quail was first introduced into the Iraqi research sector in the early 1980s. This investigation aimed to identify the genetic divergence between the available genetic lines of the Japanese quail in Iraq as a first step to conducting further conservation and breeding, benefiting from studying the genetic diversity related to productivity, adaptation, and immune susceptibility.

View Article and Find Full Text PDF

Background: Psoriasis is a chronic and incurable skin inflammation driven by an abnormal immune response. Our study aims to investigate the potential of interferon-γ (IFN-γ) primed mesenchymal stem cells (IMSCs) in targeting T cells to attenuate psoriasis-like inflammation, and to elucidate the underlying molecular mechanism involved.

Methods: Mesenchymal stem cells (MSCs) were isolated from the umbilical cord and identified based on their surface markers.

View Article and Find Full Text PDF

CAF-derived exosome-miR-3124-5p promotes malignant biological processes in NSCLC via the TOLLIP/TLR4-MyD88-NF-κB pathway.

Oncol Res

December 2024

Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China.

Background: Lung cancer is a life-threatening disease that occurs worldwide, but is especially common in China. The crucial role of the tumour microenvironment (TME) in non-small cell lung cancer (NSCLC) has attracted recent attention. Cancer-associated fibroblasts (CAFs) are the main factors that contribute to the TME function, and CAF exosomes are closely linked to NSCLC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!