Hypoxia-induced vascular smooth muscle cells (VSMCs) migration plays an important role in vascular remodeling and is implicated in vascular diseases, such as atherosclerosis and pulmonary hypertension. We previously observed the increased expression of krüppel-like factor 4 (KLF4) in VSMCs under hypoxia. However, whether the upregulation of KLF4 participates in hypoxia-induced VSMCs migration is still unknown. In this study, we demonstrated that KLF4 was an important player in the process of VSMCs migration under hypoxia since interference of KLF4 by small interfering RNA mostly dampened hypoxia-induced migration of VSMCs. In addition, using luciferase reporter and ChIP assays, we confirmed two hypoxia-inducible factor 1α (HIF1α) binding elements (located at -150 to -163 and -3922 to -3932) in the upstream regulatory region of klf4 locus and identified KLF4 as a novel direct target gene of HIF1α. Our findings unveil a novel regulatory mechanism that involves HIF1α-induced upregulation of KLF4, which plays a vital role in VSMCs migration under hypoxia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcp.28953 | DOI Listing |
Phytomedicine
January 2025
Department of Geriatrics, Affiliated Longhua Hospital of Shanghai University of Traditional Chinese Medicine, 725 South Wanping Rd, Xuhui Area, Shanghai 200032, China. Electronic address:
Background: Atherosclerosis is a major contributor to global cardiovascular morbidity and mortality, driven by the chronic inflammatory proliferation of vascular smooth muscle cells (VSMCs), which destabilizes atherosclerotic plaques. The EphA2/ephrinA1 signaling pathway plays a critical role in modulating VSMC inflammatory responses, making it an attractive therapeutic target. However, the clinical application of EphA2 inhibitors remains limited due to safety concerns.
View Article and Find Full Text PDFAntioxid Redox Signal
January 2025
Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), The First Affiliated Hospital, Sun Yat Sen University, Guangzhou, China.
Abnormal migration and proliferation of vascular smooth muscle cells (VSMCs) are considered early events in the onset of thoracic aortic dissection (TAD). Endogenous sulfur dioxide (SO), primarily produced by aspartate aminotransferase (AAT1) in mammals, has been reported to inhibit the migration and proliferation of VSMCs. However, the role of SO in the development of TAD remains unclear.
View Article and Find Full Text PDFActa Pharmacol Sin
January 2025
Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
Increased level of angiotensin II (Ang II) plays a central role in the development of hypertensive vascular remodeling. In this study, we identified the deubiquitinating enzyme Josephin domain-containing protein 2 (JOSD2) as a protective factor and investigated its molecular mechanism in Ang II-induced vascular remodeling. First, we found that JOSD2 was upregulated in aortic smooth muscle cells, but not in endothelial cells of Ang II-challenged mouse vascular tissues.
View Article and Find Full Text PDFActa Pharmacol Sin
January 2025
The Fifth Affiliated Hospital, Guangdong Province & NMPA & State Key Laboratory, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
Vascular smooth muscle cell (VSMC) phenotypic switching plays a crucial role in the initiation and progression of atherosclerosis. Dehydrocorydaline (DHC), a major active component of the traditional Chinese herbal medicine Rhizoma Corydalis, exhibits diverse pharmacological effects. However, its impact on VSMCs remains largely unknown.
View Article and Find Full Text PDFInt Heart J
January 2025
Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University.
Atherosclerosis (ATH) represents a major cause of cardiovascular disease. Long noncoding RNA (LncRNA) myocardin-induced smooth muscle lncRNA, inducer of differentiation (MYOSLID) and microRNA (miR) -29c-3p show substantial roles in ATH. We investigated their regulatory mechanisms on vascular smooth muscle cell (VSMC) proliferation and migration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!