Promoting microbial utilization of phenolic substrates from bio-oil.

J Ind Microbiol Biotechnol

Chemical and Biological Engineering, 4134 Biorenewable Research Laboratory, Iowa State University, Ames, IA, 50011, USA.

Published: November 2019

The economic viability of the biorefinery concept is limited by the valorization of lignin. One possible method of lignin valorization is biological upgrading with aromatic-catabolic microbes. In conjunction, lignin monomers can be produced by fast pyrolysis and fractionation. However, biological upgrading of these lignin monomers is limited by low water solubility. Here, we address the problem of low water solubility with an emulsifier blend containing approximately 70 wt% Tween 20 and 30 wt% Span 80. Pseudomonas putida KT2440 grew to an optical density (OD) of 1.0 ± 0.2 when supplied with 1.6 wt% emulsified phenolic monomer-rich product produced by fast pyrolysis of red oak using an emulsifier dose of 0.076 ± 0.002 g emulsifier blend per g of phenolic monomer-rich product. This approach partially mitigated the toxicity of the model phenolic monomer p-coumarate to the microbe, but not benzoate or vanillin. This study provides a proof of concept that processing of biomass-derived phenolics to increase aqueous availability can enhance microbial utilization.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10295-019-02208-zDOI Listing

Publication Analysis

Top Keywords

microbial utilization
8
biological upgrading
8
lignin monomers
8
produced fast
8
fast pyrolysis
8
low water
8
water solubility
8
emulsifier blend
8
phenolic monomer-rich
8
monomer-rich product
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!