Recent data indicate that up-to 30-40% of cancers can be prevented by dietary and lifestyle measures alone. Herein, we introduce a unique network-based machine learning platform to identify putative food-based cancer-beating molecules. These have been identified through their molecular biological network commonality with clinically approved anti-cancer therapies. A machine-learning algorithm of random walks on graphs (operating within the supercomputing DreamLab platform) was used to simulate drug actions on human interactome networks to obtain genome-wide activity profiles of 1962 approved drugs (199 of which were classified as "anti-cancer" with their primary indications). A supervised approach was employed to predict cancer-beating molecules using these 'learned' interactome activity profiles. The validated model performance predicted anti-cancer therapeutics with classification accuracy of 84-90%. A comprehensive database of 7962 bioactive molecules within foods was fed into the model, which predicted 110 cancer-beating molecules (defined by anti-cancer drug likeness threshold of >70%) with expected capacity comparable to clinically approved anti-cancer drugs from a variety of chemical classes including flavonoids, terpenoids, and polyphenols. This in turn was used to construct a 'food map' with anti-cancer potential of each ingredient defined by the number of cancer-beating molecules found therein. Our analysis underpins the design of next-generation cancer preventative and therapeutic nutrition strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6610092 | PMC |
http://dx.doi.org/10.1038/s41598-019-45349-y | DOI Listing |
Hum Genomics
June 2021
Department of Surgery and Cancer, Imperial College London, London, UK.
Background: Recent efforts in the field of nutritional science have allowed the discovery of disease-beating molecules within foods based on the commonality of bioactive food molecules to FDA-approved drugs. The pioneering work in this field used an unsupervised network propagation algorithm to learn the systemic-wide effect on the human interactome of 1962 FDA-approved drugs and a supervised algorithm to predict anticancer therapeutics using the learned representations. Then, a set of bioactive molecules within foods was fed into the model, which predicted molecules with cancer-beating potential.
View Article and Find Full Text PDFSci Rep
July 2019
Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK.
Recent data indicate that up-to 30-40% of cancers can be prevented by dietary and lifestyle measures alone. Herein, we introduce a unique network-based machine learning platform to identify putative food-based cancer-beating molecules. These have been identified through their molecular biological network commonality with clinically approved anti-cancer therapies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!