Recent data indicate that up-to 30-40% of cancers can be prevented by dietary and lifestyle measures alone. Herein, we introduce a unique network-based machine learning platform to identify putative food-based cancer-beating molecules. These have been identified through their molecular biological network commonality with clinically approved anti-cancer therapies. A machine-learning algorithm of random walks on graphs (operating within the supercomputing DreamLab platform) was used to simulate drug actions on human interactome networks to obtain genome-wide activity profiles of 1962 approved drugs (199 of which were classified as "anti-cancer" with their primary indications). A supervised approach was employed to predict cancer-beating molecules using these 'learned' interactome activity profiles. The validated model performance predicted anti-cancer therapeutics with classification accuracy of 84-90%. A comprehensive database of 7962 bioactive molecules within foods was fed into the model, which predicted 110 cancer-beating molecules (defined by anti-cancer drug likeness threshold of >70%) with expected capacity comparable to clinically approved anti-cancer drugs from a variety of chemical classes including flavonoids, terpenoids, and polyphenols. This in turn was used to construct a 'food map' with anti-cancer potential of each ingredient defined by the number of cancer-beating molecules found therein. Our analysis underpins the design of next-generation cancer preventative and therapeutic nutrition strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6610092PMC
http://dx.doi.org/10.1038/s41598-019-45349-yDOI Listing

Publication Analysis

Top Keywords

cancer-beating molecules
20
molecules foods
8
clinically approved
8
approved anti-cancer
8
activity profiles
8
molecules
6
cancer-beating
5
anti-cancer
5
hyperfoods machine
4
machine intelligent
4

Similar Publications

Background: Recent efforts in the field of nutritional science have allowed the discovery of disease-beating molecules within foods based on the commonality of bioactive food molecules to FDA-approved drugs. The pioneering work in this field used an unsupervised network propagation algorithm to learn the systemic-wide effect on the human interactome of 1962 FDA-approved drugs and a supervised algorithm to predict anticancer therapeutics using the learned representations. Then, a set of bioactive molecules within foods was fed into the model, which predicted molecules with cancer-beating potential.

View Article and Find Full Text PDF

Recent data indicate that up-to 30-40% of cancers can be prevented by dietary and lifestyle measures alone. Herein, we introduce a unique network-based machine learning platform to identify putative food-based cancer-beating molecules. These have been identified through their molecular biological network commonality with clinically approved anti-cancer therapies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!