Defective biosynthesis of the phospholipid PI(3,5)P underlies neurological disorders characterized by cytoplasmic accumulation of large lysosome-derived vacuoles. To identify novel genetic causes of lysosomal vacuolization, we developed an assay for enlargement of the lysosome compartment that is amenable to cell sorting and pooled screens. We first demonstrated that the enlarged vacuoles that accumulate in fibroblasts lacking FIG4, a PI(3,5)P biosynthetic factor, have a hyperacidic pH compared to normal cells'. We then carried out a genome-wide knockout screen in human HAP1 cells for accumulation of acidic vesicles by FACS sorting. A pilot screen captured fifteen genes, including VAC14, a previously identified cause of endolysosomal vacuolization. Three genes not previously associated with lysosome dysfunction were selected to validate the screen: C10orf35, LRRC8A, and MARCH7. We analyzed two clonal knockout cell lines for each gene. All of the knockout lines contained enlarged acidic vesicles that were positive for LAMP2, confirming their endolysosomal origin. This assay will be useful in the future for functional evaluation of patient variants in these genes, and for a more extensive genome-wide screen for genes required for endolysosome function. This approach may also be adapted for drug screens to identify small molecules that rescue endolysosomal vacuolization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6610096 | PMC |
http://dx.doi.org/10.1038/s41598-019-45939-w | DOI Listing |
Front Vet Sci
December 2024
Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China.
Meat rabbits are a small herbivorous livestock and have been popularly raised in China for producing high-quality meat. Therefore, it is economically important to genetically improve both carcass performance and meat quality in meat rabbits. However, we still know less about the underlying candidate genes that may determine phenotypic variation on carcass and meat traits of meat rabbits.
View Article and Find Full Text PDFNon-syndromic orofacial clefts (NSOC) are common craniofacial birth defects, and result from both genetic and environmental factors. NSOC include three major sub-phenotypes: non-syndromic cleft lip with palate (NSCLP), non-syndromic cleft lip only (NSCLO) and non-syndromic cleft palate only (NSCPO), NSCLP and NSCLO are also sometimes grouped as non-syndromic cleft lip with or without cleft palate (NSCL/P) based on epidemiology. Currently known loci only explain a limited proportion of the heritability of NSOC.
View Article and Find Full Text PDFThe vital role of naturally occurring dietary fibers (DFs) in maintaining intestinal health has fueled the incorporation of isolated DFs into processed foods. A select group of soluble DFs, such as partially hydrolyzed guar gum (Phgg), are being promoted as dietary supplements to meet recommended DF intake. However, the potential effects of regular consumption of these processed DFs on gastrointestinal health remain largely unknown.
View Article and Find Full Text PDFFuture Microbiol
December 2024
Department of Pharmacy, The Third Affiliated Hospital of Soochow University/The First People's Hospital of Changzhou, Changzhou, Jiangsu, China.
Aims: A notable scarcity of research has focused on examining alterations in gut microbiota and its metabolites within tacrolimus (TAC)-induced diabetes models.
Methods: Tacrolimus-induced changes in glucose and lipid metabolism indices were analyzed through different routes of administration. The potential role of gut microbiota and its metabolites in TAC-induced diabetes was investigated using 16S rRNA sequencing and non-targeted metabolomics.
Parasit Vectors
December 2024
Department of Biology, College of Arts and Sciences, Baylor University, Waco, TX, USA.
Background: The high burden of malaria in Africa is largely due to the presence of competent and adapted Anopheles vector species. With invasive Anopheles stephensi implicated in malaria outbreaks in Africa, understanding the genomic basis of vector-parasite compatibility is essential for assessing the risk of future outbreaks due to this mosquito. Vector compatibility with P.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!