A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Active eukaryotes in drinking water distribution systems of ground and surface waterworks. | LitMetric

Background: Eukaryotes are ubiquitous in natural environments such as soil and freshwater. Little is known of their presence in drinking water distribution systems (DWDSs) or of the environmental conditions that affect their activity and survival.

Methods: Eukaryotes were characterized by Illumina high-throughput sequencing targeting 18S rRNA gene (DNA) that estimates the total community and the 18S rRNA gene transcript (RNA) that is more representative of the active part of the community. DWDS cold water (N = 124), hot water (N = 40), and biofilm (N = 16) samples were collected from four cities in Finland. The sampled DWDSs were from two waterworks A-B with non-disinfected, recharged groundwater as source water and from three waterworks utilizing chlorinated water (two DWDSs of surface waterworks C-D and one of ground waterworks E). In each DWDS, samples were collected from three locations during four seasons of 1 year.

Results: A beta-diversity analysis revealed that the main driver shaping the eukaryotic communities was the DWDS (A-E) (R = 0.73, P < 0.001, ANOSIM). The kingdoms Chloroplastida (green plants and algae), Metazoa (animals: rotifers, nematodes), Fungi (e.g., Cryptomycota), Alveolata (ciliates, dinoflagellates), and Stramenopiles (algae Ochrophyta) were well represented and active-judging based on the rRNA gene transcripts-depending on the surrounding conditions. The unchlorinated cold water of systems (A-B) contained a higher estimated total number of taxa (Chao1, average 380-480) than chlorinated cold water in systems C-E (Chao1 ≤ 210). Within each DWDS, unique eukaryotic communities were identified at different locations as was the case also for cold water, hot water, and biofilms. A season did not have a consistent impact on the eukaryotic community among DWDSs.

Conclusions: This study comprehensively characterized the eukaryotic community members within the DWDS of well-maintained ground and surface waterworks providing good quality water. The study gives an indication that each DWDS houses a unique eukaryotic community, mainly dependent on the raw water source and water treatment processes in place at the corresponding waterworks. In particular, disinfection as well as hot water temperature seemed to represent a strong selection pressure that controlled the number of active eukaryotic species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6610866PMC
http://dx.doi.org/10.1186/s40168-019-0715-5DOI Listing

Publication Analysis

Top Keywords

cold water
16
water
14
surface waterworks
12
rrna gene
12
hot water
12
eukaryotic community
12
drinking water
8
water distribution
8
distribution systems
8
ground surface
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!