Lamb wave-based damage detection for large-scale composites is one of the most prosperous structural health monitoring technologies for aircraft structures. However, the temperature has a significant effect on the amplitude and phase of the Lamb wave signal so that temperature compensation is always the focus problem. Especially, it is difficult to identify the damage in the aircraft structures when the temperature is not uniform. In this paper, a compensation method for Lamb wave-based damage detection within a non-uniform temperature field is proposed. Hilbert transform and Levenberg-Marquardt optimization algorithm are developed to extract the amplitude and phase variation caused by the change of temperature, which is used to establish a data-driven model for reconstructing the reference signal at a certain temperature. In the temperature compensation process, the current Lamb wave signal of each exciting-sensing path under the estimated structural condition is substituted into the data-driven model to identify an interpolated initial temperature field, which is further processed by an outlier removing algorithm to eliminate the effect of damage and get the actual non-uniform temperature field. Temperature compensation can be achieved by reconstructing the reference signals within the identified non-uniform temperature field, which are used to compare with the current acquired signals for damage imaging. Both simulation and experiment were conducted to verify the feasibility and effectiveness of the proposed non-uniform temperature field identification and compensation technique for Lamb wave-based structural health monitoring.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6650972PMC
http://dx.doi.org/10.3390/s19132930DOI Listing

Publication Analysis

Top Keywords

temperature field
24
non-uniform temperature
20
temperature
13
damage detection
12
lamb wave-based
12
temperature compensation
12
identification compensation
8
compensation technique
8
wave-based damage
8
structural health
8

Similar Publications

Refining the Distinct Cu-N Coordination in Mesoporous N-Doped Carbon to Boost Selective Deuteration under Mild Conditions.

ACS Appl Mater Interfaces

January 2025

The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, People's Republic of China.

Deuterated compounds have broad applications across various fields, with dehalogenative deuteration serving as an efficient method to obtain these molecules. However, the diverse electronic structures of active sites in the heterogeneous system and the limited recyclability in the homogeneous system significantly hinder the advancement of dehalogenative deuteration. In this study, we present a catalyst composed of copper single-atom sites anchored within an ordered mesoporous nitrogen-doped carbon matrix, synthesized via a mesopore confinement method.

View Article and Find Full Text PDF

A new [DyBiOCl(saph)] () Werner-type cluster has been prepared, which is the first Dy/Bi polynuclear compound with no metal-metal bond and one of the very few Ln-Bi (Ln = lanthanide) heterometallic complexes reported to date. The molecular compound has been deliberately transformed to its 1-D analogue [DyBiO(N)(saph)] () via the replacement of the terminal Cl ions by end-to-end bridging N groups. The overall metallic skeleton of (and ) can be described as consisting of a diamagnetic {Bi} unit with an elongated trigonal bipyramidal topology, surrounded by a magnetic {Dy} equilateral triangle, which does not contain μ-oxo/hydroxo/alkoxo groups.

View Article and Find Full Text PDF

Gold (or electrum) in hydrothermal fluid precipitates directly from gold sulfide complex and/or partly via suspended nanoparticles. The hydrothermal fluid contains "invisible gold" that is atomically dispersed in sulfide minerals or as nanoparticles with a size of less than 10 nm. However, the contribution of these gold nanoparticles to the formation of native gold and its alloy with silver (electrum) remains unclear.

View Article and Find Full Text PDF

A carbon nanotube (CNT) composite is an effective method to improve the thermoelectricity of materials. However, the depletion layer between the CNT and thermoelectric (TE) material always decreases the contribution of CNT to the conductivity of the TE material. It is important to eliminate the depletion layer for improving the TE properties.

View Article and Find Full Text PDF

Stable Luminescent Diradicals: The Emergence and Potential Applications.

Angew Chem Int Ed Engl

January 2025

Jilin University, College of Electronic Science and Engineering, State Key Laboratory of Integrated Optoelectronics, Qianjin Avenue 2699, Changchun, 130012, Changchun, CHINA.

Stable luminescent diradicals, characterized by the presence of two unpaired electrons, exhibit unique photophysical properties that are sensitive to external stimuli such as temperature, magnetic fields, and microwaves. This sensitivity allows the manipulation of their spin states and luminescence, setting them apart from traditional closed-shell luminescent molecules and luminescent monoradicals. As a result, luminescent diradicals are emerging as promising candidates for a variety of applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!