Background: The tumor microenvironment (TME) plays a crucial role in virtually every aspect of tumorigenesis of glioblastoma multiforme (GBM). A dysfunctional TME promotes drug resistance, disease recurrence, and distant metastasis. Recent evidence indicates that exosomes released by stromal cells within the TME may promote oncogenic phenotypes via transferring signaling molecules such as cytokines, proteins, and microRNAs.

Results: In this study, clinical GBM samples were collected and analyzed. We found that GBM-associated macrophages (GAMs) secreted exosomes which were enriched with oncomiR-21. Coculture of GAMs (and GAM-derived exosomes) and GBM cell lines increased GBM cells' resistance against temozolomide (TMZ) by upregulating the prosurvival gene programmed cell death protein 4 (PDCD4) and stemness markers SRY (sex determining region y)-box 2 (Sox2), signal transducer and activator of transcription 3 (STAT3), Nestin, and miR-21-5p and increasing the M2 cytokines interleukin 6 (IL-6) and transforming growth factor beta 1(TGF-β1) secreted by GBM cells, promoting the M2 polarization of GAMs. Subsequently, pacritinib treatment suppressed GBM tumorigenesis and stemness; more importantly, pacritinib-treated GBM cells showed a markedly reduced ability to secret M2 cytokines and reduced miR-21-enriched exosomes secreted by GAMs. Pacritinib-mediated effects were accompanied by a reduction of oncomiR miR-21-5p, by which the tumor suppressor PDCD4 was targeted. We subsequently established patient-derived xenograft (PDX) models where mice bore patient GBM and GAMs. Treatment with pacritinib and the combination of pacritinib and TMZ appeared to significantly reduce the tumorigenesis of GBM/GAM PDX mice as well as overcome TMZ resistance and M2 polarization of GAMs.

Conclusion: In summation, we showed the potential of pacritinib alone or in combination with TMZ to suppress GBM tumorigenesis via modulating STAT3/miR-21/PDCD4 signaling. Further investigations are warranted for adopting pacritinib for the treatment of TMZ-resistant GBM in clinical settings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6678764PMC
http://dx.doi.org/10.3390/jcm8070959DOI Listing

Publication Analysis

Top Keywords

gbm
10
mir-21-enriched exosomes
8
gbm cells
8
pacritinib treatment
8
gbm tumorigenesis
8
pacritinib combination
8
pacritinib
6
exosomes
5
gams
5
preclinical evidence
4

Similar Publications

Objectives: External quality assessment (EQA) programs play a pivotal role in harmonizing laboratory practices, offering users a benchmark system to evaluate their own performance and identify areas requiring improvement. The objective of this study was to go through and analyze the UK NEQAS "Immunology, Immunochemistry and Allergy" EQA reports between 2012 and 2021 to assess the overall level of harmonization in autoimmune diagnostics and identify areas requiring improvement for future actions.

Methods: The EQA programs reviewed included anti-nuclear (ANA), anti-dsDNA, anti-centromere, anti-extractable nuclear antigen (ENA), anti-phospholipids, anti-neutrophil cytoplasm (ANCA), anti-proteinase 3 (PR3), anti-myeloperoxidase (MPO), anti-glomerular basement membrane (GBM), rheumatoid factor (RF), anti-citrullinated protein antibodies (ACPA), mitochondrial (AMA), liver-kidney-microsomal (LKM), smooth muscle (ASMA), APCA, and celiac disease antibodies.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is the most lethal type of primary brain tumor, necessitating the discovery of reliable serum prognostic biomarkers. This study aimed to investigate the prognostic value of serum Interleukin-6 (IL-6) in GBM patients. Bioinformatics analysis via gene set enrichment analysis was conducted on The Cancer Genome Atlas RNA-seq data to explore the pathways enriched in samples with high expression.

View Article and Find Full Text PDF

HIF-1α Mediated Regulation of Glioblastoma Malignant Phenotypes through CD47 Protein: Understanding Functions and Mechanisms.

J Cancer

January 2025

Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.

Glioblastoma (GBM) is a highly invasive and malignant primary intracranial tumor originating from glial cells, and it is associated with an extremely poor clinical prognosis. The hypoxic conditions within GBM promote various tumor cell processes such as angiogenesis, proliferation, migration, invasion, and drug resistance. A key aspect of tumor adaptation to the hypoxic environment and the promotion of malignant behaviors is the regulation of HIF-1α signaling pathways.

View Article and Find Full Text PDF

Glioblastoma (GBM) is defined by heterogeneous and resilient cell populations that closely reflect neurodevelopmental cell types. Although it is clear that GBM echoes early and immature cell states, identifying the specific developmental programmes disrupted in these tumours has been hindered by a lack of high-resolution trajectories of glial and neuronal lineages. Here we delineate the course of human astrocyte maturation to uncover discrete developmental stages and attributes mirrored by GBM.

View Article and Find Full Text PDF

Background: Prognosis prediction in the intensive care unit (ICU) traditionally relied on physiological scoring systems based on clinical indicators at admission. Electrocardiogram (ECG) provides easily accessible information, with heart rate variability (HRV) derived from ECG showing prognostic value. However, few studies have conducted a comprehensive analysis of HRV-based prognostic model against established standards, which limits the application of HRV's prognostic value in clinical settings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!