The purpose of this study was to compare energy expenditure (EE) estimates from 5 consumer physical activity monitors (PAMs) to indirect calorimetry in a sample of youth. Eighty-nine youth (mean (SD); age, 12.3 (3.4) years; 50% female) performed 16 semi-structured activities. Activities were performed in duplicate across 2 visits. Participants wore a Cosmed K4b (criterion for EE), an Apple Watch 2 (left wrist), Mymo Tracker (right hip), and Misfit Shine 2 devices (right hip; right shoe). Participants were randomized to wear a Samsung Gear Fit 2 or a Fitbit Charge 2 on the right wrist. Oxygen consumption was converted to EE by subtracting estimated basal EE (Schofield's equation) from the measured gross EE. EE from each visit was summed across the 2 visit days for comparison with the total EE recorded from the PAMs. All consumer PAMs estimated gross EE, except for the Apple Watch 2 (net Active EE). Paired tests were used to assess differences between estimated (PAM) and measured (K4b) EE. Mean absolute percent error (MAPE) was used to assess individual-level error. The Mymo Tracker was not significantly different from measured EE and was within 15.9 kcal of measured kilocalories ( = 0.764). Mean percent errors ranged from 3.5% (Mymo Tracker) to 48.2% (Apple Watch 2). MAPE ranged from 16.8% (Misfit Shine 2 - right hip) to 49.9% (Mymo Tracker). Only the Mymo Tracker was not significantly different from measured EE but had the greatest individual error. The Misfit Shine 2 - right hip had the lowest individual error. Caution is warranted when using consumer PAMs in youth for tracking EE.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7251475 | PMC |
http://dx.doi.org/10.1139/apnm-2019-0129 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!