Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ecoregionalization is the process by which a territory is classified in similar areas according to specific environmental and climatic factors. The climate and the environment strongly influence the presence and distribution of vectors responsible for significant human and animal diseases worldwide. In this paper, we developed a map of the eco-climatic regions of Italy adopting a data-driven spatial clustering approach using recent and detailed spatial data on climatic and environmental factors. We selected seven variables, relevant for a broad set of human and animal vector-borne diseases (VBDs): standard deviation of altitude, mean daytime land surface temperature, mean amplitude and peak timing of the annual cycle of land surface temperature, mean and amplitude of the annual cycle of greenness value, and daily mean amount of rainfall. Principal Component Analysis followed by multivariate geographic clustering using the k-medoids technique were used to group the pixels with similar characteristics into different ecoregions, and at different spatial resolutions (250 m, 1 km and 2 km). We showed that the spatial structure of ecoregions is generally maintained at different spatial resolutions and we compared the resulting ecoregion maps with two datasets related to Bluetongue vectors and West Nile Disease (WND) outbreaks in Italy. The known characteristics of Culicoides imicola habitat were well captured by 2/22 specific ecoregions (at 250 m resolution). Culicoides obsoletus/scoticus occupy all sampled ecoregions, according to its known widespread distribution across the peninsula. WND outbreak locations strongly cluster in 4/22 ecoregions, dominated by human influenced landscape, with intense cultivations and complex irrigation network. This approach could be a supportive tool in case of VBDs, defining pixel-based areas that are conducive environment for VBD spread, indicating where surveillance and prevention measures could be prioritized in Italy. Also, ecoregions suitable to specific VBDs vectors could inform entomological surveillance strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6608978 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0219072 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!