Microfluidic-Printed Microcarrier for In Vitro Expansion of Adherent Stem Cells in 3D Culture Platform.

Macromol Biosci

Impedance Imaging Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, South Korea.

Published: August 2019

Microcarrier-based stem cell expansion cultures can increase the dimensions of in vitro stem cell cultures from 2D to 3D. The culture handling process then becomes more efficient compared with conventional 2D cultures. However, the use of spherical plastic microcarriers complicates the monitoring of cell culture. To facilitate monitoring, transparent disc-shaped microcarriers are manufactured using a light-initiated microfluidic printing system and the obtained microcarriers are named as 2.5D microcarrier. The 2.5D microcarriers (diameter/height ≈ 5) enable us to use conventional monitoring tools in 2D-based platform during the in vitro expansion on a 3D culture platform. Surface modification via a 1 h-long poly-dopamine (PDA) reaction can maintain the transparent nature of the microcarriers while optimizing the cell attachment. The surface marker expression and differentiation potential of the 2.5D microcarrier-expanded stem cells reveal that the characteristics and functionalities preserved during expansion. The 2.5D microcarrier is readily integrated into an on-bead assay to conserve reagents and permit a high number (n = 9) of repeated measurements with reliable results. These results demonstrate that the 2.5D microcarrier-based scale-up culture provides a valuable tool for the in vitro expansion of adherent stem cells, especially if repetitive monitoring is required.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mabi.201900136DOI Listing

Publication Analysis

Top Keywords

vitro expansion
12
stem cells
12
expansion adherent
8
adherent stem
8
culture platform
8
stem cell
8
25d microcarrier
8
expansion
5
stem
5
culture
5

Similar Publications

Cytoplasmic proliferating cell nuclear antigen (PCNA) is highly expressed in acute myeloid leukemia (AML) cells, supporting oxidative metabolism and leukemia stem cell (LSC) growth. We report on AOH1996 (AOH), an oral compound targeting cancer-associated PCNA, which shows significant antileukemic activity. AOH inhibited growth in AML cell lines and primary CD34 + CD38 - blasts (LSC-enriched) in vitro while sparing normal hematopoietic stem cells (HSCs).

View Article and Find Full Text PDF

The Critical Influence of Wire Diameter and Bending for Orthodontic Wire Integration-New Insights for Maxillary Movements (In Vitro Study).

Dent J (Basel)

December 2024

Research Center for Digital Technologies in Dentistry and CAD/CAM, Department of Dentistry, Faculty of Medicine and Dentistry, Danube Private University, Steiner Landstraße 124, 3500 Krems an der Donau, Austria.

: Traditional methods for palatal expansion using fixed appliances often face limitations in comfort and aesthetics. In comparison, aligner therapy has limitations, particularly regarding maxillary expansion. The aim of this study is to examine the biomechanical properties regarding the wire diameter and bending of different stainless steel wires to evaluate their potential for incorporation into maxillary aligner therapy.

View Article and Find Full Text PDF

Introduction: Histone deacetylase inhibitors (HDACi) and combination chemotherapy are independently used to treat relapsed/refractory (R/R) lymphoma. In vitro studies suggest that the addition of HDACi to platinum-based chemotherapy is synergistic.

Patients And Methods: We conducted a phase I study of romidepsin, gemcitabine, oxaliplatin and dexamethasone (Romi-GemOxD) in R/R aggressive lymphomas with an expansion cohort in T-cell lymphomas.

View Article and Find Full Text PDF

Exposure to ultraviolet-B (UVB) induces the expansion of regulatory T (Treg) cells expressing proenkephalin (PENK) and amphiregulin (AREG) with a healing function in the skin. It is unclear how this UVB exposure affects the functionally distinct subsets of skin Treg cells. In this study, we have demonstrated that skin-resident CD81Treg cells expressing both Penk and Areg expanded after UVB irradiation.

View Article and Find Full Text PDF

Alternative splicing expands the antiviral IFITM repertoire in Chinese rufous horseshoe bats.

PLoS Pathog

December 2024

Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom.

Species-specific interferon responses are shaped by the virus-host arms race. The human interferon-induced transmembrane protein (IFITM) family consists of three antiviral IFITM genes that arose by gene duplication. These genes restrict virus entry and are key players in antiviral interferon responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!