Biological materials found in Nature such as nacre and bone are well recognized as light-weight, strong, and tough structural materials. The remarkable toughness and damage tolerance of such biological materials are conferred through hierarchical assembly of their multiscale (i.e., atomic- to macroscale) architectures and components. Herein, the toughening mechanisms of different organisms at multilength scales are identified and summarized: macromolecular deformation, chemical bond breakage, and biomineral crystal imperfections at the atomic scale; biopolymer fibril reconfiguration/deformation and biomineral nanoparticle/nanoplatelet/nanorod translation, and crack reorientation at the nanoscale; crack deflection and twisting by characteristic features such as tubules and lamellae at the microscale; and structure and morphology optimization at the macroscale. In addition, the actual loading conditions of the natural organisms are different, leading to energy dissipation occurring at different time scales. These toughening mechanisms are further illustrated by comparing the experimental results with computational modeling. Modeling methods at different length and time scales are reviewed. Examples of biomimetic designs that realize the multiscale toughening mechanisms in engineering materials are introduced. Indeed, there is still plenty of room mimicking the strong and tough biological designs at the multilength and time scale in Nature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.201901561 | DOI Listing |
Sci Rep
January 2025
Department of Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden.
Aneurysm rupture is a life-threatening event, yet its underlying mechanisms remain largely unclear. This study investigated the fracture properties of the thoracic aneurysmatic aorta (TAA) using the symmetry-constraint Compact Tension (symconCT) test and compared results to native and enzymatic-treated porcine aortas' tests. With age, the aortic stiffness increased, and tissues ruptured at lower fracture energy [Formula: see text].
View Article and Find Full Text PDFNat Commun
January 2025
CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui, China.
Control of crack propagation is crucial to make tougher heterogeneous materials. As a crack interacts with material heterogeneities, its front distorts and adopts complex tortuous configurations. While the behavior of smooth cracks with straight fronts in homogeneous materials is well understood, the toughening by rough cracks with tortuous fronts in heterogeneous materials remains unsolved.
View Article and Find Full Text PDFSci Rep
December 2024
School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, China.
The dolomite dust-emulsified asphalt composite (DAC) with excellent mechanical properties was successfully prepared using alkali activation. The effects of different alkali concentrations and emulsified asphalt contents on the mechanical properties of the materials were studied. And the micro-mechanisms of its mechanical performance changes were analyzed through SEM and XRD characterization.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
The rising industrial demand for ultra-lightweight materials with exceptional strength and toughness has intensified interest in dual-phase Mg-Li alloys due to their low density and high specific strength. While much of the research on Mg-Li alloys has concentrated on conventional strengthening methods, such as grain refinement and solid-solution strengthening, overcoming the challenge of plastic deformation compatibility between the α- and β-phases remains unresolved. This study focuses on Mg-8Li binary alloy, systematically investigating the impact of rolling deformation temperature and strain on the phase structures.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Synergetic Extreme Condition High-Pressure Science Center, State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Qianjin Street, Changchun 130012, China.
Introducing a second phase has been an effective way to solve the brittleness of boron carbide (BC) for its application. Though reduced graphene oxide (rGO) is an ideal candidate for reinforcing the BC duo's two-dimensional structure and excellent mechanical properties, the toughness is less than 6 MPa·m, or the hardness is lower than 30 GPa in BC-graphene composites. A barrier to enhancing toughness is the weak interface strength between rGO and BC, which limits the bridging and pull-out toughening effects of rGO.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!