Upregulation of fascin-1 is involved in HIF-1α-dependent invasion and migration of hypopharyngeal squamous cell carcinoma.

Int J Oncol

Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong Provincial ENT Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China.

Published: August 2019

Fascin‑1 is an actin‑bundling protein, which specifically interacts with F‑actin to form parallel actin bundles, and participates in the regulation of cell adhesion, interactions and migration. However, the expression and regulatory mechanisms of fascin‑1 in hypopharyngeal squamous cell carcinoma (HSCC) remain poorly understood. The present study investigated the effects and underlying molecular mechanism of fascin‑1 on the invasion and metastasis of HSCC. The results demonstrated that fascin‑1 was overexpressed and correlated with lymph node metastasis and tumor‑node‑metastasis stage in HSCC tissues. Further in vitro study revealed that fascin‑1 promoted cell morphology polarization to increase the motility of FaDu cells. In addition, fascin‑1 significantly promoted the migration and invasion of FaDu cells. At the molecular level, fascin‑1 promoted cell invasion and migration by upregulating matrix metalloproteinase‑2 (MMP‑2) expression in FaDu cells. Immunohistochemical analysis revealed that a correlation existed between hypoxia inducible factor (HIF)‑1α and fascin‑1 expression in the HSCC tissues. Furthermore, the results from a cobalt chloride‑induced hypoxia model demonstrated that fascin‑1 may be upregulated by HIF‑1α in FaDu cells. Further analysis revealed that fascin‑1 knockdown significantly decreased the invasion of cells under hypoxia and partially reversed hypoxia‑induced MMP‑2 expression under hypoxia in FaDu cells. In conclusion, fascin‑1 was upregulated by HIF‑1α, and promoted the invasion and migration of HSCC cells; therefore, fascin‑1 may provide a potential target for the treatment of invasion and metastasis in HSCC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6615917PMC
http://dx.doi.org/10.3892/ijo.2019.4827DOI Listing

Publication Analysis

Top Keywords

fadu cells
20
invasion migration
12
fascin‑1
12
fascin‑1 promoted
12
hypopharyngeal squamous
8
squamous cell
8
invasion metastasis
8
metastasis hscc
8
demonstrated fascin‑1
8
hscc tissues
8

Similar Publications

FL118, a camptothecin derivative with dual mechanisms of action through topoisomerase I inhibition and proteasome-mediated degradation of anti-apoptotic proteins exhibits potent anti-tumor activity while remaining resistant to drug efflux transporters. This work describes the targeted delivery of FL118 to tumors via antibody-drug conjugates (ADCs) using the pH-sensitive CL2A linker. ADCs targeting Trop2, HER2, and EGFR exhibited potent in vitro cytotoxicity, with IC values as low as 0.

View Article and Find Full Text PDF

Background And Purpose: Radiotherapy induces tumor cell killing by generating DNA double strand breaks (DSBs). The effectiveness of radiotherapy is significantly influenced by the repair of DSBs, which counteracts this lethal effect. Current investigations are focused on determining whether non-homologous end joining (NHEJ) or homologous recombination is the predominant repair pathway following proton and photon radiation.

View Article and Find Full Text PDF

Radiotherapy is an integral modality in treating human cancers, but radioresistance remains a clinical challenge due to the involvement of multiple intrinsic cellular and extrinsic tumour microenvironment factors that govern radiosensitivity. To study the intrinsic factors that are associated with cancer radioresistance, we established 4 radioresistant prostate (22Rv1 and DU145) and head and neck cancer (FaDu and HK1) models by irradiating their wild-type parentals to 90 Gy, mimicking the fractionated radiotherapy schema that is often using in the clinic, and performed whole exome and transcriptome sequencing of the radioresistant and wild-type models. Comparative genomic analyses detected the enrichment of mismatch repair mutational signatures (SBS6, 14, 15, 20) across all the cell lines and several non-synonymous single nucleotide variants involved in pro-survival pathways.

View Article and Find Full Text PDF

Pro-apoptotic and anti-proliferative activities of cassane diterpenoids on squamous carcinoma cells: An in vitro and in silico study.

Toxicol Rep

December 2024

Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, Rostock University, Medical Center, Schillingallee 35, Rostock 18057, Germany.

Squamous carcinoma of the head and neck is characterized by aberrant apoptosis that prolongs the proliferative capacity of the cells and by uncontrolled cell growth. This study aimed to examine the pro-apoptotic and antiproliferative effects of cassane diterpenoids on squamous carcinoma cells . The cytotoxicity of four (4) cassane diterpenoids {Six-cinnamoyl- 7-hydroxyvouacapen-5-ol(1), pulcherrimin A(2), C(3), and E(4)} isolated from C.

View Article and Find Full Text PDF

Mithramycin targets head and neck cancer stem cells by inhibiting Sp1 and UFMylation.

Cancer Cell Int

December 2024

Laboratory for Personalized Medicine, Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, Zagreb, 10000, Croatia.

Background: The development of resistance to therapy is characteristic of head and neck squamous cell carcinoma (HNSCC), the 6th most common cancer, and is often attributed to cancer stem cells (CSCs). By proteomic approach, we determined that UFMylation plays an important role in HNSCC CSCs. Because of the necessity for innovative therapeutic strategies, we explore here the therapy targeting CSCs based on mithramycin and its inhibitory effect on Sp1 transcription factor, UFMylation, and CSCs survival and stemness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!