The evolution of female genitalia.

J Evol Biol

Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley, Western Australia, Australia.

Published: September 2019

Female genitalia have been largely neglected in studies of genital evolution, perhaps due to the long-standing belief that they are relatively invariable and therefore taxonomically and evolutionarily uninformative in comparison with male genitalia. Contemporary studies of genital evolution have begun to dispute this view, and to demonstrate that female genitalia can be highly diverse and covary with the genitalia of males. Here, we examine evidence for three mechanisms of genital evolution in females: species isolating 'lock-and-key' evolution, cryptic female choice and sexual conflict. Lock-and-key genital evolution has been thought to be relatively unimportant; however, we present cases that show how species isolation may well play a role in the evolution of female genitalia. Much support for female genital evolution via sexual conflict comes from studies of both invertebrate and vertebrate species; however, the effects of sexual conflict can be difficult to distinguish from models of cryptic female choice that focus on putative benefits of choice for females. We offer potential solutions to alleviate this issue. Finally, we offer directions for future studies in order to expand and refine our knowledge surrounding female genital evolution.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jeb.13503DOI Listing

Publication Analysis

Top Keywords

genital evolution
24
female genitalia
16
sexual conflict
12
evolution
9
evolution female
8
studies genital
8
cryptic female
8
female choice
8
female genital
8
female
7

Similar Publications

Chevrolat, 1863, one of the most species-rich genera of Clytini, comprises 36 subgenera and 302 species/subspecies, with some species being of significant economic importance. To assess the monophyly and subgeneric system of this genus, we newly obtained mitochondrial genomic data from 21 species of via high-throughput sequencing and reconstructed the phylogeny of this genus using ML and BI methods. The mitochondrial genomes of all sequenced species were found to comprise 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs), two ribosomal RNAs (rRNAs), and one non-coding region (control region, CR), reflecting a highly conserved gene arrangement.

View Article and Find Full Text PDF

Insights into Reproduction Through Gonadal Tissue Methylation Analysis and Transcriptomic Integration.

Biomolecules

January 2025

Área de Genética, Facultad de Ciencias del Mar y Ambientales, INMAR, Universidad de Cádiz, 11510 Cádiz, Spain.

Fish exhibit diverse mechanisms of sex differentiation and determination, shaped by both external and internal influences, often regulated by distinct DNA methylation patterns responding to environmental changes. In aquaculture, reproductive issues in captivity pose significant challenges, particularly the lack of fertilization capabilities in captive-bred males, hindering genetic improvement measures. This study analyzed the methylation patterns and transcriptomic profiles in gonadal tissue DNA from groups differing in rearing conditions and sexual maturity stages.

View Article and Find Full Text PDF

: Excessive or inadequate use of antimicrobial drugs may lead to the emergence of resistant strains. For this reason, it is important to monitor consumption indicators to assess drugs' utilization over time. This study aimed to analyze the consumption of medically prescribed azole antifungal drugs in mainland Portugal from 2014 to 2023, focusing on those directed to genital infections: fluconazole, isoconazole, itraconazole, and sertaconazole.

View Article and Find Full Text PDF

The mammalian Y chromosome is essential for male fertility, but which Y genes regulate spermatogenesis is unresolved. We addressed this by generating 13 Y-deletant mouse models. In , , and deletants, spermatogenesis was impaired.

View Article and Find Full Text PDF

Background: East African cichlid fishes have diversified in an explosive fashion, but the (epi)genetic basis of the phenotypic diversity of these fishes remains largely unknown. Although transposable elements (TEs) have been associated with phenotypic variation in cichlids, little is known about their transcriptional activity and epigenetic silencing. We set out to bridge this gap and to understand the interactions between TEs and their cichlid hosts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!