The cell wall proteome from two strains of Pseudocercospora fijiensis with differences in virulence.

World J Microbiol Biotechnol

Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Col. Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, Mexico.

Published: July 2019

Pseudocercospora fijiensis causes black Sigatoka disease, the most important threat to banana. The cell wall is crucial for fungal biological processes, including pathogenesis. Here, we performed cell wall proteomics analyses of two P. fijiensis strains, the highly virulent Oz2b, and the less virulent C1233 strains. Strains were starved from nitrogen to mimic the host environment. Interestingly, in vitro cultures of the C1233 strain grew faster than Oz2b in PDB medium, suggesting that C1233 survives outside the host better than the highly virulent Oz2b strain. Both strains were submitted to nitrogen starvation and the cell wall proteins were isolated and subjected to nano-HPLC-MS/MS. A total of 2686 proteins were obtained from which only 240 had a known function and thus, bioinformatics analyses were performed on this group. We found that 90 cell wall proteins were shared by both strains, 21 were unique for Oz2b and 39 for C1233. Shared proteins comprised 24 pathogenicity factors, including Avr4 and Ecp6, two effectors from P. fijiensis, while the unique proteins comprised 16 virulence factors in C1233 and 11 in Oz2b. The P. fijiensis cell wall proteome comprised canonical proteins, but thirty percent were atypical, a feature which in other phytopathogens has been interpreted as contamination. However, a comparison with the identities of atypical proteins in other reports suggests that the P. fijiensis proteins we detected were not contaminants. This is the first proteomics analysis of the P. fijiensis cell wall and our results expands the understanding of the fundamental biology of fungal phytopathogens and will help to decipher the molecular mechanisms of pathogenesis and virulence in P. fijiensis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11274-019-2681-2DOI Listing

Publication Analysis

Top Keywords

cell wall
28
wall proteome
8
fijiensis
8
pseudocercospora fijiensis
8
highly virulent
8
virulent oz2b
8
proteins
8
wall proteins
8
proteins comprised
8
fijiensis cell
8

Similar Publications

Brown cotton and white cotton are two important raw materials used in the cotton fiber industry. Clarifying the differences in morphology, agronomic traits, and fiber pigments between these varieties can facilitate the implementation of corresponding cultivation and breeding techniques. Therefore, we obtained F generation brown cotton plants through hybridization and compared them with their parents.

View Article and Find Full Text PDF

A diagnostic host-specific transcriptome response for Mycoplasma pneumoniae pneumonia to guide pediatric patient treatment.

Nat Commun

January 2025

Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, 15782, Calle San Francisco sn, Galicia, Spain.

Mycoplasma pneumoniae causes atypical pneumonia in children and young adults. Its lack of a cell wall makes it resistant to beta-lactams, which are the first-line treatment for typical pneumonia. Current diagnostic tests are time-consuming and have low specificity, leading clinicians to administer empirical antibiotics.

View Article and Find Full Text PDF

Reactivation of cell division is crucial for the regeneration of damaged tissues, which is a fundamental process across all multicellular organisms. However, the mechanisms underlying the activation of cell division in plants during regeneration remain poorly understood. Here, we show that single-cell endodermal ablation generates a transient change in the local mechanical pressure on neighboring pericycle cells to activate patterned cell division that is crucial for tissue regeneration in Arabidopsis roots.

View Article and Find Full Text PDF

Functional verification of a landmark gene EVM713 involved in spermatogenesis in the marine bivalve Chlamys nobilis.

Comp Biochem Physiol Part D Genomics Proteomics

January 2025

Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; Research Center for Subtropical Mariculture of Guangdong Province, Shantou 515063, China. Electronic address:

The formation of broodstock gametes is closely linked to the yield and quality in aquaculture production, yet molecular mechanisms underlying this process remain insufficiently understood. The noble scallop Chlamys nobilis, an economically significant dioecious bivalve species, serves as an excellent model for studying gametogenesis. In this study, the adult scallops with testis at different developmental stage were chosen for histological examination and transcriptome analysis to dig genes related gonad development.

View Article and Find Full Text PDF

Graded porous scaffold mediates internal fluidic environment for 3D in vitro mechanobiology.

Comput Biol Med

January 2025

Department of Biomedical Engineering, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom; Zienkiewicz Institute for Modelling Data and AI, Swansea University, Swansea, United Kingdom. Electronic address:

Most cell types are mechanosensitive, their activities such as differentiation, proliferation and apoptosis, can be influenced by the mechanical environment through mechanical stimulation. In three dimensional (3D) mechanobiological in vitro studies, the porous structure of scaffold controls the local mechanical environment that applied to cells. Many previous studies have focused on the topological design of homogeneous scaffold struts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!