Soil Microbial Community Responses After Amendment with Thermally Altered Pinus radiata Needles.

Microb Ecol

School of Agriculture, Food and Wine, and The Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, South Australia, 5064, Australia.

Published: February 2020

Post-fire litter layers are composed of leaves and woody debris that predominantly fall during or soon after the fire event. These layers are distinctly different to pre-fire litters due to their common origin and deposition time. However, heterogeneity can arise from the variable thermal conditions in the canopy during fire. Therefore, in this study, we used thermally altered pine needles (heated to 40 °C, 150 °C, 260 °C and 320 °C for 1 h) in a laboratory incubation study for 43 days. These samples were measured for respiration throughout and extracted for DNA at the experiment's end; soil ribosomal RNA was analysed using Illumina sequencing (16S and internal transcribed spacer amplicons). The addition of pine needles heated to 40 °C or 150 °C caused a substantial shift in community structure, decreased alpha diversity and significantly increased soil respiration relative to the control treatment. In contrast, pine needles heated to 260 °C or 320 °C had little effect on microbial community structure or soil respiration. These results indicate that highly thermally altered needles are not microbially decomposed during the first 43 days of exposure and therefore that biomass temperature may have significant effects on post-fire litter decomposition and carbon flux. This research outlines an important knowledge gap in forest fire responses that may affect post-fire carbon emission estimates.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00248-019-01402-xDOI Listing

Publication Analysis

Top Keywords

thermally altered
12
pine needles
12
needles heated
12
microbial community
8
post-fire litter
8
°c
8
heated °c
8
°c 150
8
150 °c
8
260 °c
8

Similar Publications

This study investigated the single and combined effects of environmental heat stress and physical exercise on executive function (EF) performance, prefrontal cortex oxygenation, thermoregulatory responses and subjective perceptions. Sixteen subjects participated in four experimental sessions: two under moderate environmental conditions (23 °C), with and without physical exercise (R23, E23), and two under hot environmental conditions (35 °C), with and without physical exercise (R35, E35). In each session, participants completed EF tasks before and after 1 h of passive rest or 45 min of moderate-intensity cycling followed by 15 min of rest.

View Article and Find Full Text PDF

The current demand for highly sensitive, optical sensors in biodiagnostics has prompted the development of ultrathin metal coatings on a range of substrates. Given the potential attenuation of the signal from a plasmonic sensor for the detection of fluorescent molecules when an adhesion layer between the substrate and coating is employed, this study examines the impact of various factors on the adhesion strength between gold coatings and substrates comprising glass and cyclo-olefin-polymer (COP). The objective is to identify potential configurations for high adhesion strength, thereby eliminating the need for an adhesion layer in the fabrication of optical sensors with gold coatings for diagnostic applications or to utilize a minimal adhesion layer thickness.

View Article and Find Full Text PDF

The development of stable, high-performance electrolytes is essential to addressing the safety concerns and limited lifespan caused by the thermal and chemical instability of traditional organic carbonate-based electrolytes in lithium-ion batteries (LIBs). This study examined the potential of mixed solvent systems, specifically ethyl methyl carbonate (EMC) and tetramethylene sulfone (TMS), to modify ion solvation and improve ionic conductivity in LIB electrolytes. Through molecular dynamics simulations, we investigated the solvation structure and transport properties of lithium ions (Li) in these solvent environments.

View Article and Find Full Text PDF

Nociception is the process by which sensory neurons detect and encode potentially harmful environmental stimuli to generate behavioral responses. Nociceptor neurons exhibit plasticity in which their sensitivity to noxious stimuli and subsequent ability to drive behavior may be altered by environmental conditions, injury, infection, and inflammation. In some cases, nociceptor sensitization requires regulated changes in gene expression, and recent studies have indicated roles for post-transcriptional mechanisms in regulating these changes as an aspect of nociceptor plasticity.

View Article and Find Full Text PDF

The applicability of cellulose and its derivatives is greatly depends on their attributes such as aspect ratio, morphology, surface chemistry, crystallinity, as well as their thermal and mechanical properties. However, these attributes can alter according to the utilized raw material, size classifications, extraction techniques, or fibrillation methods. Among these, the effect of raw material particle size on cellulose properties has received limited attention in scientific studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!