Preeclampsia is a complication of pregnancy characterised by gestational hypertension, proteinuria and/or end organ disease. The reduced uteroplacental perfusion (RUPP) model, via partial occlusion of the lower abdominal aorta, mimics insufficient placental perfusion as a primary causal characteristic of preeclampsia. However, a major limitation of the RUPP model is that perfusion is reduced to the entire hindquarters of the rat resulting in hindlimb ischemia. We hypothesised that clipping the uterine and ovarian arteries in the selective (s)RUPP model would provoke signs of preeclampsia while avoiding systemic ischemia. Sham, RUPP or sRUPP procedures were performed in pregnant Sprague Dawley rats on gestational day (GD)14. On GD21 uterine blood flow was significantly reduced in both the RUPP and sRUPP models while aortic flow was reduced only in RUPP. Both models resulted in increased MAP, increased vascular oxidative stress (superoxide generation), increased pro-inflammatory (RANTES) and reduced pro-angiogenic (endoglin) mediators. Vascular compliance and constriction were unaltered in either RUPP or sRUPP groups. In summary, refinements to the RUPP model simultaneously maintain the characteristic phenotype of preeclampsia and avoid peripheral ischemia; providing a useful tool which may be used to increase our knowledge and bring us closer to a solution for women affected by preeclampsia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6606748 | PMC |
http://dx.doi.org/10.1038/s41598-019-45959-6 | DOI Listing |
ACS Nano
January 2025
Peter Grünberg Institut (PGI-9), Forschungszentrum Jülich, 52425 Jülich, Germany.
The combination of an ordinary s-type superconductor with three-dimensional topological insulators creates a promising platform for fault-tolerant topological quantum computing circuits based on Majorana braiding. The backbone of the braiding mechanism are three-terminal Josephson junctions. It is crucial to understand the transport in these devices for further use in quantum computing applications.
View Article and Find Full Text PDFVaccine
January 2025
Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
Introduction: While it remains impossible to predict the timing of the next influenza pandemic, novel avian influenza A viruses continue to be considered a significant threat.
Methods: A Phase II study was conducted in healthy adults aged 18-64 years to assess the safety and immunogenicity of two intramuscular doses of pre-pandemic 2017 influenza A(H7N9) inactivated vaccine administered 21 days apart. Participants were randomized (n = 105 in each of Arms 1-3) to receive 3.
J Hypertens
February 2025
Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, People's Republic of China.
Background: Preeclampsia (PE) is marked by hypertension and detrimental sterile inflammatory response. Despite the reported anti-inflammatory effect of pyridostigmine bromide (PYR) in different models, its anti-inflammatory mechanism in PE is unclear. This study assessed whether such an anti-inflammatory effect involves inhibition of placental Toll-like receptor 4 (TLR4) signaling.
View Article and Find Full Text PDFNpj Ment Health Res
December 2024
Machine Learning and Data Analytics Lab (MaD Lab), Department Artificial Intelligence in Biomedical Engineering (AIBE), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, 91052, Germany.
Detecting depression is a critical component of mental health diagnosis, and accurate assessment is essential for effective treatment. This study introduces a novel, fully automated approach to predicting depression severity using the E-DAIC dataset. We employ Large Language Models (LLMs) to extract depression-related indicators from interview transcripts, utilizing the Patient Health Questionnaire-8 (PHQ-8) score to train the prediction model.
View Article and Find Full Text PDFJ Vis Exp
December 2024
Department of Medical Materials Science & Technology, Institute for Biomedical Engineering, University Hospital Tübingen;
Foreign body reaction (FBR), an immune-mediated complex healing process, plays a crucial role in integrating implants into the body. Macrophages, as the first line of immune system interaction with implant surfaces, play a bidirectional role in modulating the inflammation-regeneration balance. For a deep understanding and the evaluation of the reactions between implant materials and immune responses, reliable in vitro methods and protocols are pivotal.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!