The Lorenz system is a simplified model of Rayleigh-Bénard convection, a thermally driven fluid convection between two parallel plates. Two additional physical ingredients are considered in the governing equations, namely, rotation of the model frame and the presence of a density-affecting scalar in the fluid, in order to derive a six-dimensional nonlinear ordinary differential equation system. Since the new system is an extension of the original three-dimensional Lorenz system, the behavior of the new system is compared with that of the old system. Clear shifts of notable bifurcation points in the thermal Rayleigh parameter space are seen in association with the extension of the Lorenz system, and the range of thermal Rayleigh parameters within which chaotic, periodic, and intermittent solutions appear gets elongated under a greater influence of the newly introduced parameters. When considered separately, the effects of scalar and rotation manifest differently in the numerical solutions; while an increase in the rotational parameter sharply neutralizes chaos and instability, an increase in a scalar-related parameter leads to the rise of a new type of chaotic attractor. The new six-dimensional system is found to self-synchronize, and surprisingly, the transfer of solutions to only one of the variables is needed for self-synchronization to occur.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.5095466 | DOI Listing |
J Clin Med
January 2025
Department of Trauma Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
: Tactile gnosis derives from the interplay between the hand's tactile input and the memory systems of the brain. It is the prerequisite for complex hand functions. Impaired sensation leads to profound disability.
View Article and Find Full Text PDFJ Patient Exp
January 2025
Neo Q Quality in Imaging GmbH, Berlin, Germany.
Patient experience is a vital measure of healthcare quality, affecting satisfaction, engagement, and outcomes. Standardized radiology reporting can improve care by enhancing communication, reducing errors, and optimizing workflows. This article examines the role of structured reporting and AI in improving patient experience, addressing challenges like workload imbalances and communication issues.
View Article and Find Full Text PDFFront Immunol
January 2025
Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
Introduction: Human Cytotoxic-T-lymphocyte-antigen-4 (CTLA-4) insufficiency caused by heterozygous germline mutations in is a complex immune dysregulation and immunodeficiency syndrome presenting with reduced penetrance and variable disease expressivity, suggesting the presence of disease modifiers that trigger the disease onset and severity. Various genetic and non-genetic potential triggers have been analyzed in CTLA-4 insufficiency cohorts, however, none of them have revealed a clear association to the disease. Multiple HLA haplotypes have been positively or negatively associated with various autoimmune diseases and inborn errors of immunity (IEI) due to the relevance of MHC in the strength of the T cell responses.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Institute of Physics and Materials Science, Department of Natural Sciences and Sustainable Ressources, BOKU University, Peter Jordan-Straß 82, 1190 Vienna, Austria.
Spider silk (SPSI) is a promising candidate for use as a filler material in nerve guidance conduits (NGCs), facilitating peripheral nerve regeneration by providing a scaffold for Schwann cells (SCs) and axonal growth. However, the specific properties of SPSI that contribute to its regenerative success remain unclear. In this study, the egg sac silk of is investigated, which contains two distinct fiber types: tubuliform (TU) and major ampullate (MA) silk.
View Article and Find Full Text PDFNature
January 2025
Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Tertiary lymphoid structures (TLSs) are de novo ectopic lymphoid aggregates that regulate immunity in chronically inflamed tissues, including tumours. Although TLSs form due to inflammation-triggered activation of the lymphotoxin (LT)-LTβ receptor (LTβR) pathway, the inflammatory signals and cells that induce TLSs remain incompletely identified. Here we show that interleukin-33 (IL-33), the alarmin released by inflamed tissues, induces TLSs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!