Though generative adversarial networks (GANs) can hallucinate high-quality high-resolution (HR) faces from low-resolution (LR) faces, they cannot ensure identity preservation during face hallucination, making the HR faces difficult to recognize. To address this problem, we propose a Siamese GAN (SiGAN) to reconstruct HR faces that visually resemble their corresponding identities. On top of a Siamese network, the proposed SiGAN consists of a pair of two identical generators and one discriminator. We incorporate reconstruction error and identity label information in the loss function of SiGAN in a pairwise manner. By iteratively optimizing the loss functions of the generator pair and the discriminator of SiGAN, we not only achieve visually-pleasing face reconstruction but also ensure that the reconstructed information is useful for identity recognition. Experimental results demonstrate that SiGAN significantly outperforms existing face hallucination GANs in objective face verification performance while achieving promising visual-quality reconstruction. Moreover, for input LR faces with unseen identities that are not part of the training dataset, SiGAN can still achieve reasonable performance.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TIP.2019.2924554DOI Listing

Publication Analysis

Top Keywords

face hallucination
12
generative adversarial
8
sigan achieve
8
sigan
7
face
5
faces
5
sigan siamese
4
siamese generative
4
adversarial network
4
network identity-preserving
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!