Variants in the microglial receptor TREM2 confer risk for multiple neurodegenerative diseases. However, it remains unknown how this receptor functions on microglia to modulate these diverse neuropathologies. To understand the role of TREM2 on microglia more generally, we investigated changes in microglial function in Trem2 mice. We found that loss of TREM2 impairs normal neurodevelopment, resulting in reduced synapse number across the cortex and hippocampus in 1-month-old mice. This reduction in synapse number was not due directly to alterations in interactions between microglia and synapses. Rather, TREM2 was required for microglia to limit synaptic engulfment by astrocytes during development. While these changes were largely normalized later in adulthood, high fat diet administration was sufficient to reinitiate TREM2-dependent modulation of synapse loss. Together, this identifies a novel role for microglia in instructing synaptic pruning by astrocytes to broadly regulate appropriate synaptic refinement, and suggests novel candidate mechanisms for how TREM2 and microglia could influence synaptic loss in brain injury and disease.

Download full-text PDF

Source
http://dx.doi.org/10.1002/glia.23664DOI Listing

Publication Analysis

Top Keywords

trem2 required
8
synaptic engulfment
8
trem2 microglia
8
synapse number
8
trem2
7
microglia
6
synaptic
5
required microglial
4
microglial instruction
4
instruction astrocytic
4

Similar Publications

Successful pancreatic ductal adenocarcinoma (PDAC) immunotherapy requires therapeutic combinations that induce quality T cells. Tumor microenvironment (TME) analysis following therapeutic interventions can identify response mechanisms, informing design of effective combinations. We provide a reference single-cell dataset from tumor-infiltrating leukocytes (TILs) from a human neoadjuvant clinical trial comparing the granulocyte-macrophage colony-stimulating factor (GM-CSF)-secreting allogeneic PDAC vaccine GVAX alone, in combination with anti-PD1 or with both anti-PD1 and CD137 agonist.

View Article and Find Full Text PDF

Cerebrospinal fluid β2-microglobulin promotes the tau pathology through microglia-astrocyte communication in Alzheimer's disease.

Alzheimers Res Ther

January 2025

Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016, China.

Background: Cerebrospinal fluid (CSF) β2-microglobulin (β2M) has been demonstrated as an important factor in β-amyloid (Aβ) neurotoxicity and a potential target for Alzheimer's disease (AD). However, more investigation is required to ascertain the relationship between β2M and glial activities in AD pathogenesis.

Methods: In this study, 211 participants from the Alzheimer's disease Neuroimaging Initiative (ADNI) with CSF and Plasma β2M, CSF glial fibrillary acidic protein (GFAP), soluble triggering receptor expressed on myeloid cells 2 (sTREM2), Aβ, phosphorylated-tau (P-tau) and total tau (T-tau) were divided into four groups, stage 0, 1, 2, and suspected non-AD pathology (SNAP) based on the National Institute on Aging- Alzheimer's Association (NIA-AA) criteria.

View Article and Find Full Text PDF

The microglial triggering receptor expressed on myeloid cells 2 (TREM2) is required for diverse microglia responses in neurodegeneration, including immunometabolic plasticity, phagocytosis, and survival. We previously identified that patient iPSC-derived microglia (iPS-Mg) harboring the Alzheimer's disease (AD) TREM2 hypomorph display several functional deficits linked to metabolism. To investigate whether these deficits are associated with disruptions in metabolite signaling, we generated common variant, TREM2 and TREM2 variant human iPS-Mg.

View Article and Find Full Text PDF

Neuroinflammation in Alzheimer disease.

Nat Rev Immunol

December 2024

Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette/Belvaux, Luxembourg.

Article Synopsis
  • Research highlights the significant role of immune processes in the development of Alzheimer's disease, which is the leading cause of dementia.
  • Various studies indicate that both innate and adaptive immune responses contribute to the disease's pathology and are influenced by genetics and lifestyle factors.
  • New therapeutic approaches targeting neuroinflammation are being explored in clinical settings, offering potential treatment options for Alzheimer's patients.
View Article and Find Full Text PDF

Single-cell or single-nucleus transcriptomics is a powerful tool for identifying cell types and cell states. However, hypotheses derived from these assays, including gene expression information, require validation, and their functional relevance needs to be established. The choice of validation depends on numerous factors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!