pH-Sensitive Visible or Shortwave Infrared Quantum Dot Nanoprobes Using Conformation-Switchable Copolymeric Ligands.

ACS Appl Mater Interfaces

LPEM, UMR 8213, ESPCI Paris, PSL Research University, CNRS, Sorbonne Université, 75005 Paris , France.

Published: July 2019

Intracellular and extracellular pH are key parameters in many physiological processes and diseases. For example, the extracellular pH of the tumor micro-environment is slightly more acidic than in healthy tissue. In vivo mapping of the extracellular pH within the tumor would therefore improve our understanding of the tumor physiology. Fluorescent semiconductor quantum dots (QDs) represent interesting probes for in vivo imaging, in particular in the shortwave infrared (SWIR) range. Here, pH-sensitive QD nanoprobes are developed using a conformation-switchable surface chemistry. The central fluorescent QD is coated with a copolymer ligand and conjugated to gold nanoparticle quenchers. As the pH decreases from physiological (7.5) to slightly acidic (5.5-6), the copolymer reversibly shrinks, which increases the energy transfer between the QD and the gold quenchers and modulates the QD fluorescence signal. This enables the design of ratiometric QD probes for biological pH range emitting in the visible or SWIR range. In addition, these probes can be easily encapsulated and remain functional within ghost erythrocyte membranes, which facilitate their in vivo application.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.9b06194DOI Listing

Publication Analysis

Top Keywords

shortwave infrared
8
extracellular tumor
8
swir range
8
ph-sensitive visible
4
visible shortwave
4
infrared quantum
4
quantum dot
4
dot nanoprobes
4
nanoprobes conformation-switchable
4
conformation-switchable copolymeric
4

Similar Publications

Short-wave infrared (SWIR) imaging has a wide range of applications in civil and military fields. Over the past two decades, significant efforts have been devoted to developing high-resolution, high-sensitivity, and cost-effective SWIR sensors covering the spectral range from 0.9 μm to 3 μm.

View Article and Find Full Text PDF

Recent advancements in Earth Observation sensors, improved accessibility to imagery and the development of corresponding processing tools have significantly empowered researchers to extract insights from Multisource Remote Sensing. This study aims to use these technologies for mapping summer and winter Land Use/Land Cover features in Cuenca de la Laguna Merín, Uruguay, while comparing the performance of Random Forests, Support Vector Machines, and Gradient-Boosting Tree classifiers. The materials include Sentinel-2, Sentinel-1 and Shuttle Radar Topography Mission imagery, Google Earth Engine, training and validation datasets and quoted classifiers.

View Article and Find Full Text PDF

Supercontinuum generation in scintillator crystals.

Sci Rep

January 2025

Laser Research Center, Vilnius University, Saulėtekio Avenue 10, LT-10223, Vilnius, Lithuania.

We present a comparative experimental study of supercontinuum generation in undoped scintillator crystals: bismuth germanate (BGO), yttrium orthosilicate (YSO), lutetium oxyorthosilicate (LSO), lutetium yttrium oxyorthosilicate (LYSO) and gadolinium gallium garnet (GGG), pumped by 180 fs fundamental harmonic pulses of an amplified Yb:KGW laser. In addition to these materials, experiments in yttrium aluminium garnet (YAG), potassium gadolinium tungstate (KGW) and lithium tantalate (LT) were performed under identical experimental settings (focusing geometry and sample thickness), which served for straightforward comparison of supercontinuum generation performances. The threshold and optimal (that produces optimized red-shifted spectral extent) pump pulse energies for supercontinuum generation were evaluated from detailed measurements of spectral broadening dynamics.

View Article and Find Full Text PDF

The shortwave infrared (SWIR) region is an ideal spectral window for next-generation bioimaging to harness improved penetration and reduced phototoxicity. SWIR spectral activity may also be accessed via supramolecular dye aggregation. Unfortunately, development of dye aggregation remains challenging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!