The Effect of Visual and Auditory Information on the Perception of Pleasantness and Roughness of Virtual Surfaces.

Multisens Res

Department of Psychology and NeuroMi, Milan Center for Neuroscience, University of Milan-Bicocca, Piazza dell'Ateneo Nuovo 1, 20126 Milan, Italy.

Published: January 2018

Despite the large number of studies on the multisensory aspects of tactile perception, very little is known regarding the effects of visual and auditory sensory modalities on the tactile hedonic evaluation of textures, especially when the presentation of the stimuli is mediated by a haptic device. In this study, different haptic virtual surfaces were rendered by varying the static and dynamic frictional coefficients of a Geomagic® Touch device. In Experiment 1, the haptic surfaces were paired with pictures representing everyday materials (glass, plastic, rubber and steel); in Experiment 2, the haptic surfaces were paired with sounds resulting from the haptic exploration of paper or sandpaper. In both the experiments, participants were required to rate the pleasantness and the roughness of the virtual surfaces explored. Exploration times were also recorded. Both pleasantness and roughness judgments, as well as the durations of exploration, varied as a function of the combinations of the visuo-tactile and the audio-tactile stimuli presented. Taken together, these results suggest that vision and audition modulate haptic perception and hedonic preferences when tactile sensations are provided through a haptic device. Importantly, these results offer interesting suggestions for designing more pleasant, and even more realistic, multisensory virtual surfaces.

Download full-text PDF

Source
http://dx.doi.org/10.1163/22134808-00002603DOI Listing

Publication Analysis

Top Keywords

virtual surfaces
12
visual auditory
8
haptic device
8
haptic surfaces
8
surfaces paired
8
pleasantness roughness
8
haptic
7
surfaces
5
auditory on the perception
4
on the perception pleasantness
4

Similar Publications

Design, Synthesis, Biocompatibility, molecular docking and molecular dynamics studies of novel Benzo[b]thiophene-2-carbaldehyde derivatives targeting human IgM Fc Domains.

Bioorg Chem

January 2025

Department of Chemistry, St Berchmans College (Autonomous), Changanassery, Kerala 686101, India; Centre for Theoretical and Computational Chemistry, St Berchmans College (Autonomous), Changanassery, Kerala 686101, India. Electronic address:

In this study, three novel derivatives of benzo[b]thiophene-2-carbaldehyde (BTAP1, BTAP2, and BTAP3) were successfully synthesized and comprehensively characterized using spectroscopic techniques including FTIR, UV-VIS, HNMR, and CNMR. Thermal analysis through TGA and DTA demonstrated remarkable thermal stability with a maximum threshold at 270 °C. Spectroscopic investigations revealed π → π* transitions in all compounds, attributed to the conjugated system comprising benzothiophene rings connected to bromophenyl/ aminophenyl/phenol rings via α, β-unsaturated ketone bridges.

View Article and Find Full Text PDF

Discovery of potential VEGFR-2 inhibitors from natural products by virtual screening and molecular dynamics simulation.

Phys Chem Chem Phys

January 2025

Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China.

Hepatocellular carcinoma (HCC) is the most common cancer worldwide and vascular endothelial growth factor receptor-2 (VEGFR-2) is an important target in the development of inhibitors for the treatment of liver cancer. So far, however, there are no effective drugs targeting VEGFR-2 to achieve complete treatment of liver cancer. In this study, we employed molecular docking, molecular dynamics simulations, molecular mechanics generalized Born surface area (MM-GBSA) method, quantum mechanics/molecular mechanics (QM/MM) calculations and steered molecular dynamics simulations to discover the potential inhibitors from COCONUT database targeting VEGFR-2.

View Article and Find Full Text PDF

Introduction: The purpose of this study is to determine baseline demographics and utilization trend of an on-demand, synchronous tele-ophthalmology triage program in evaluating acute ophthalmic concerns during the COVID-19 Public Health Emergency.

Methods: Setting: Single-center retrospective chart review of telemedicine visits conducted by ophthalmologists and optometrists from University of Miami's Bascom Palmer Eye Institute. Patient population: 6227 patients comprised 7138 telehealth encounters.

View Article and Find Full Text PDF

Atmospheric refraction imposes a fundamental limitation on the accuracy and precision of geodetic measurements that utilize electromagnetic waves. For terrestrial observations at optical wavelengths recorded over flat terrain, the vertical temperature gradient controls the bending of the rays thus affecting mostly the vertical angle measurement. The rules of thumb for mitigating these effects (variation ranges and short-term fluctuations) are based on intuition and practitioner experience.

View Article and Find Full Text PDF

In the realm of 3D measurement, photometric stereo excels in capturing high-frequency details but suffers from accumulated errors that lead to low-frequency distortions in the reconstructed surface. Conversely, light field (LF) reconstruction provides satisfactory low-frequency geometry but sacrifices spatial resolution, impacting high-frequency detail quality. To tackle these challenges, we propose a photometric stereoscopic light field measurement (PSLFM) scheme that harnesses the strengths of both methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!