Purpose: To assess whether virtual non-contrast (VNC) images derived from contrast dual-layer dual-energy computed tomography (DL-DECT) images could replace true non-contrast (TNC) images for aortic intramural hematoma (IMH) diagnosis in acute aortic syndrome (AAS) imaging protocols by performing quantitative as well as qualitative phantom and clinical studies.
Materials And Methods: Patients with confirmed IMH were included retrospectively in two centers. For in vitro imaging, a custom-made phantom of IMH was placed in a semi-anthropomorphic thorax phantom (QRM GmbH) and imaged on a DL-DECT at 120 kVp under various conditions of patient size, radiation exposure, and reconstruction modes. For in vivo imaging, 21 patients (70 ± 13 years) who underwent AAS imaging protocols at 120 kVp were included. In both studies, contrast-to-noise ratio (CNR) between hematoma and lumen was compared using a paired t test. Diagnostic confidence (1 = non-diagnostic, 4 = exemplary) for VNC and TNC images was rated by two radiologists and compared. Effective radiation doses for each acquisition were calculated.
Results: In both the phantom and clinical studies, we observed that the CNRs were similar between the VNC and TNC images. Moreover, both methods allowed differentiating the hyper-attenuation within the hematoma from the blood. Finally, we obtained equivalent high diagnostic confidence with both VNC and TNC images (VNC = 3.2 ± 0.7, TNC = 3.1 ± 0.7; p = 0.3). Finally, by suppressing TNC acquisition and using VNC, the mean effective dose reduction would be 40%.
Conclusion: DL-DECT offers similar performances with VNC and TNC images for IMH diagnosis without compromise in diagnostic image quality.
Key Points: • Dual-layer dual-energy CT enables virtual non-contrast imaging from a contrast-enhanced acquisition. • Virtual non-contrast imaging with dual-layer dual-energy CT reduces the number of acquisitions and radiation exposure in acute aortic syndrome imaging protocol. • Dual-layer dual-energy CT has the potential to become a suitable imaging tool for acute aortic syndrome.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00330-019-06322-5 | DOI Listing |
Quant Imaging Med Surg
December 2024
Department of Radiotherapy, Peking Union Medical College Hospital, Beijing, China.
Background: In the traditional computed tomography (CT) simulation process, patients need to undergo CT scans before and after injection of iodine-based contrast agent, resulting in a cumbersome workflow and additional imaging dose. Contrast-enhanced spectral CT can synthesize true contrast-enhanced (TCE) images and virtual noncontrast (VNC) images in a single scan without geometric misalignment. To improve work efficiency and reduce patients' imaging dose, we studied the feasibility of using VNC images for radiotherapy treatment planning, with true noncontrast (TNC) images as references and explored its dosimetric advantages compared to using TCE images.
View Article and Find Full Text PDFQuant Imaging Med Surg
December 2024
Department of Radiology, Zhongshan City People's Hospital, Zhongshan, China.
Background: Virtual noncontrast (VNC) images generated by dual-layer spectral computed tomography (DLCT) remove iodine influence from enhanced images to simulate true noncontrast (TNC) images. Previous research has demonstrated the high comparability of abdominal VNC images with TNC images, suggesting their potential as substitutes. Given the thyroid's significant iodine content, this study evaluated the efficacy of VNC images for removing both intrinsic and extrinsic iodine through an analysis of computed tomography (CT) attenuation and iodine density in TNC and enhanced VNC thyroid images.
View Article and Find Full Text PDFCurr Opin Chem Biol
December 2024
Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK. Electronic address:
Intracellular calcium (Ca) is involved in a plethora of cell signalling processes and physiological functions. Increases in Ca concentration are bona fide biomarkers of neuronal activity, reflecting the spike count, timing, frequency, and the intensity of synaptic input. The development of genetically encoded calcium indicators (GECIs) was a significant advancement in modern neuroscience that enabled real-time visualisation of neuronal activity at single-cell resolution.
View Article and Find Full Text PDFHeart Views
October 2024
Department of Radio-diagnosis and Imaging, KS Hegde Medical Academy (KSHEMA), NITTE (Deemed to be University), Mangalore, Karnataka, India.
Computed tomographic (CT) coronary artery angiography with calcium scoring is crucial in suspecting coronary artery disease (CAD). The routine protocol for CAD radiological investigation involves a precontrast series for calcium scoring and a postcontrast series for investigating structural changes in coronary arteries. This review intends to investigate the feasibility of virtual noncontrast images to replace the true noncontrast (TNC) images in coronary artery calcium scoring to decrease the radiation dose.
View Article and Find Full Text PDFDiagnostics (Basel)
November 2024
Department of Diagnostic and Interventional Radiology, University Hospital Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany.
: Virtual non-contrast (VNC) series reconstructed from contrast-enhanced cardiac scans acquired with photon counting detector CT (PCD-CT) systems have the potential to replace true non-contrast (TNC) series. However, a quantitative comparison of the image characteristics of TNC and VNC data is necessary to determine to what extent they are interchangeable. This work quantitatively evaluates the image similarity between VNC and TNC reconstructions by measuring the stability of multi-class radiomics features extracted in intra-patient TNC and VNC reconstructions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!