A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Increased Nose-to-Brain Delivery of Melatonin Mediated by Polycaprolactone Nanoparticles for the Treatment of Glioblastoma. | LitMetric

Increased Nose-to-Brain Delivery of Melatonin Mediated by Polycaprolactone Nanoparticles for the Treatment of Glioblastoma.

Pharm Res

Laboratório de Nanotecnologia Farmacêutica e Sistemas de Liberação de Fármacos, FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás - UFG, FarmaTec - 5ª Avenida c/Rua 240 s/n, Praça Universitária, Goiânia, GO, 74605-170, Brazil.

Published: July 2019

Purpose: Intranasal administration has been extensively applied to deliver drugs to the brain. In spite of its unfavorable biopharmaceutic properties, melatonin (MLT) has demonstrated anticancer effects against glioblastoma. This study describes the nose-to-brain delivery of MLT-loaded polycaprolactone nanoparticles (MLT-NP) for the treatment of glioblastoma.

Methods: MLT-NP were prepared by nanoprecipitation. Following intranasal administration in rats, brain targeting of the formulation was demonstrated by fluorescence tomography. Brain and plasma pharmacokinetic profiles were analyzed. Cytotoxicity against U87MG glioblastoma cells and MRC-5 non-tumor cells was evaluated.

Results: MLT-NP increased the drug apparent water solubility ~35 fold. The formulation demonstrated strong activity against U87MG cells, resulting in IC50 ~2500 fold lower than that of the free drug. No cytotoxic effect was observed against non-tumor cells. Fluorescence tomography images evidenced the direct translocation of nanoparticles from nasal cavity to the brain. Intranasal administration of MLT-NP resulted in higher AUC and drug targeting index compared to the free drug by either intranasal or oral route.

Conclusions: Nanoencapsulation of MLT was crucial for the selective antitumoral activity against U87MG. In vivo evaluation confirmed nose-to-brain delivery of MLT mediated by nanoparticles, highlighting the formulation as a suitable approach to improve glioblastoma therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11095-019-2662-zDOI Listing

Publication Analysis

Top Keywords

nose-to-brain delivery
12
intranasal administration
12
polycaprolactone nanoparticles
8
formulation demonstrated
8
fluorescence tomography
8
non-tumor cells
8
activity u87mg
8
free drug
8
increased nose-to-brain
4
delivery melatonin
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!