Simultaneous genomic selection for grain yield, protein content and dough rheological traits enables the development of resource-use efficient varieties that combine superior yield potential with comparably high end-use quality. Selecting simultaneously for grain yield and baking quality is a major challenge in wheat breeding, and several concepts like grain protein deviations have been developed for shifting the undesirable negative correlation between both traits. The protein quality is, however, not considered in these concepts, although it is an important aspect and might facilitate the selection of genotypes that use available resources more efficiently with respect to the quantity and quality of the final end products. A population of 480 lines from an applied wheat breeding programme that was phenotyped for grain yield, protein content, protein yield and dough rheological traits was thus used to assess the potential of using integrated genomic selection indices to ease selection decisions with regard to the plethora of quality traits. Additionally, the feasibility of achieving a simultaneous genetic improvement in grain yield, protein content and protein quality was investigated to develop more resource-use efficient varieties. Dough rheological traits related to either gluten strength or viscosity were combined in two separate indices, both of which showed a substantially smaller negative trade-off with grain yield than the protein content. Genomic selection indices based on regression deviations for the two latter traits were subsequently extended by the gluten strength or viscosity indices. They revealed a large merit for identifying resource-use efficient genotypes that combine both superior yield potential with comparably high end-use quality. Hence, genomic selection opens up the opportunity for multi-trait selection in early generations, which will most likely increase the efficiency when developing new and improved varieties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6763414PMC
http://dx.doi.org/10.1007/s00122-019-03386-1DOI Listing

Publication Analysis

Top Keywords

grain yield
24
yield protein
20
protein content
20
genomic selection
20
content protein
12
protein quality
12
dough rheological
12
rheological traits
12
resource-use efficient
12
protein
10

Similar Publications

Lead (Pb), a toxic metal, causes severe health hazards to both humans and plants due to environmental pollution. Biochar addition has been efficiently utilized to enhance growth of plants as well as yield in the presence of Pb-induced stress. The present research introduces a novel use of biochar obtained from the weed Achyranthes japonica to enhance the growth of plants in Pb-contaminated soil.

View Article and Find Full Text PDF

Optimizing nitrogen (N) sources has the potential to improve wheat tillering, nitrogen use efficiency (NUE), and grain yield, yet the underlying mechanisms remain unclear. This study hypothesizes that combining specific N sources can increase zeatin riboside + zeatin (ZR + ZT) content in tiller nodes and maintain a higher ZR + ZT/gibberellin A7 (GA) ratio, thereby promoting tiller development, enhancing NUE, and increasing yield. The effects of N source treatments on two wheat cultivars, the multi-spike Shannong 28 (SN28) and the large-spike Tainong 18 (TN18), were investigated.

View Article and Find Full Text PDF

The mung bean ( (Linn) Wilczek.) is a major grain crop in China, but its yield is significantly impacted by weeds. However, no pre-emergence herbicides are registered for mung bean fields in the China Pesticide Information Network.

View Article and Find Full Text PDF

The incorporation of rice straw (RS) and Chinese milk vetch (CMV) with reduced chemical fertilizers (CFs) is a viable solution to reduce the dependency on CF. However, limited research has been conducted to investigate the impact of CMV and RS with reduced CF on rice production. A field trial was conducted from 2018 to 2021 with six treatments: CK (no fertilizer), F100 (100% NPK fertilizer (CF)), MSF100 (100% CF+CMV and RS incorporation), MSF80 (80% CF+CMV+RS), MSF60 (60% CF+CMV+RS), and MSF40 (40% CF+CMV+RS).

View Article and Find Full Text PDF

Salt stress is an important factor affecting the growth and development of rice, and prohexadione calcium (Pro-Ca) plays an important role in alleviating rice salt stress and improving rice yield. However, there are few studies on how Pro-Ca improves rice yield under salt stress by regulating the source-sink metabolism. In this study, we used Guanghong 3 (salt-tolerant variety) and Huanghuazhan (salt-sensitive variety) as experimental materials to investigate the dynamic changes in the synthesis and partitioning of nonstructural carbohydrates among source-sink, the dynamic changes in related enzyme activities, the effects of the source-sink metabolism on yield in rice under salt stress and the effect of Pro-Ca during the filling period.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!