A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Comparison of deep learning and human observer performance for detection and characterization of simulated lesions. | LitMetric

Comparison of deep learning and human observer performance for detection and characterization of simulated lesions.

J Med Imaging (Bellingham)

Rensselaer Polytechnic Institute, Department of Biomedical Engineering, Troy, New York, United States.

Published: April 2019

Detection and characterization of abnormalities in clinical imaging are of utmost importance for patient diagnosis and treatment. We present a comparison of convolutional neural network (CNN) and human observer performance on a simulated lesion detection and characterization task. We apply both conventional performance metrics, including accuracy and nonconventional metrics such as lift charts to perform qualitative and quantitative comparisons of each type of observer. It is determined that the CNN generally outperforms the human observers, particularly at high noise levels. However, high noise correlation reduces the relative performance of the CNN, and human observer performance is comparable to CNN under these conditions. These findings extend into the field of diagnostic radiology, where the adoption of deep learning is starting to become widespread. Consideration of the applications for which deep learning is most effective is of critical importance to this development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6586983PMC
http://dx.doi.org/10.1117/1.JMI.6.2.025503DOI Listing

Publication Analysis

Top Keywords

deep learning
12
human observer
12
observer performance
12
detection characterization
12
cnn human
8
high noise
8
performance
5
comparison deep
4
human
4
learning human
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!