Soft chemical ionization mass spectrometric techniques, such as proton transfer reaction mass spectrometry (PTR-MS), are often used in breath analysis, being particularly powerful for real-time measurements. To ascertain the type and concentration of volatiles in exhaled breath clearly assignable product ions resulting from these volatiles need to be determined. This is difficult for compounds where isomers are common, and one important class of breath volatiles where this occurs are ketones. Here we present a series of extensive measurements on the reactions of HO with a selection of ketones using PTR-MS. Of particular interest is to determine if ketone isomers can be distinguished without the need for pre-separation by manipulating the ion chemistry through changes in the reduced electric field. An additional issue for breath analysis is that the product ion distributions for these breath volatiles are usually determined from direct PTR-MS measurements of the compounds under the normal operating conditions of the instruments. Generally, no account is made for the effects on the ion-molecule reactions by the introduction of humid air samples or increased CO concentrations into the drift tubes of these analytical devices resulting from breath. Therefore, another motivation of this study is to determine the effects, if any, on the product ion distributions under the humid conditions associated with breath sampling. However, the ultimate objective for this study is to provide a valuable database of use to other researchers in the field of breath analysis to aid in analysis and quantification of trace amounts of ketones in human breath. Here we present a comprehensive compendium of the product ion distributions as a function of the reduced electric field for the reactions of HO. (HO) ( = 0 and 1) with nineteen ketones under normal and humid (100% relative humidity for 37 °C) PTR-MS conditions. The ketones selected for inclusion in this compendium are (in order of increasing molecular weight): 2-butanone; 2-pentanone; 3-pentanone; 2-hexanone; 3-hexanone; 2-heptanone; 3-heptanone; 4-heptanone; 3-octanone; 2-nonanone; 3-nonanone; 2-decanone; 3-decanone; cyclohexanone; 3-methyl-2-butanone; 3-methyl-2-pentanone; 2-methyl-3-pentanone; 2-methyl-3-hexanone; and 2-methyl-3-heptanone.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6584912 | PMC |
http://dx.doi.org/10.3389/fchem.2019.00401 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!