As the number of elucidated protein structures is rapidly increasing, the growing data call for methods to efficiently exploit the structural information for biological and pharmaceutical purposes. Given the three-dimensional (3D) structure of a protein and a ligand, predicting their binding sites and affinity are a key task for computer-aided drug discovery. To address this task, a variety of docking tools have been developed. Most of them focus on docking in the preset binding sites given by users. To automatically predict binding modes without information about binding sites, we developed a user-friendly blind docking web server, named CB-Dock, which predicts binding sites of a given protein and calculates the centers and sizes with a novel curvature-based cavity detection approach, and performs docking with a popular docking program, Autodock Vina. This method was carefully optimized and achieved ~70% success rate for the top-ranking poses whose root mean square deviation (RMSD) were within 2 Å from the X-ray pose, which outperformed the state-of-the-art blind docking tools in our benchmark tests. CB-Dock offers an interactive 3D visualization of results, and is freely available at http://cao.labshare.cn/cb-dock/.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7471403 | PMC |
http://dx.doi.org/10.1038/s41401-019-0228-6 | DOI Listing |
Mol Biotechnol
January 2025
Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
Glucanases are widely applied in industrial applications such as brewing, biomass conversion, food, and animal feed. Glucanases catalyze the hydrolysis of glucan to produce the sugar hemiacetal through hydrolytic cleavage of glycosidic bonds. Current study aimed to investigate structural insights of a glucanase from Clostridium perfringens through blind molecular docking, site-specific molecular docking, molecular dynamics (MD) simulation, and binding energy calculation.
View Article and Find Full Text PDFAmino Acids
January 2025
College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
In recent years, it was found that lysine malonylation modification can affect biological metabolism and play an important role in plant life activities. Platycodon grandiflorus, an economic crop and medicinal plant, had no reports on malonylation in the related literature. This study qualitatively introduces lysine malonylation in P.
View Article and Find Full Text PDFACS Nano
January 2025
Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China.
Atherosclerosis (AS) is a prevalent inflammatory vascular disease characterized by plaque formation, primarily composed of foam cells laden with lipids. Despite lipid-lowering therapies, effective plaque clearance remains challenging due to the overexpression of the CD47 molecule on apoptotic foam cells, inhibiting macrophage-mediated cellular efferocytosis and plaque resolution. Moreover, AS lesions are often associated with severe inflammation and oxidative stress, exacerbating disease progression.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore.
Establishing optimized metal-support interaction (MSI) between active sites and the substrate is essential for modulating the adsorption properties of key reaction intermediates during catalysis, thereby enhancing the catalytic performance. In this study, catalyst composites with varying degrees of MSI are constructed using ruthenium (Ru) and different carbon nanotubes, and their performance for alkaline hydrogen evolution reaction (HER) is systematically investigated. Detailed kinetic assessments reveal that catalysts with a strong MSI exhibit superior HER activity.
View Article and Find Full Text PDFACS Chem Neurosci
January 2025
National Center for Natural Products Research, University of Mississippi, University, Mississippi 38677, United States.
Cannabinoid receptor 1 (CB1R) has been extensively studied as a potential therapeutic target for various conditions, including pain management, obesity, emesis, and metabolic syndrome. Unlike orthosteric agonists such as Δ-tetrahydrocannabinol (THC), cannabidiol (CBD) has been identified as a negative allosteric modulator (NAM) of CB1R, among its other pharmacological targets. Previous computational and structural studies have proposed various binding sites for CB1R NAMs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!