Structural insights into the ability of nucleoplasmin to assemble and chaperone histone octamers for DNA deposition.

Sci Rep

Instituto Biofisika (CSIC, UPV/EHU) and Departamento de Bioquímica y Biología Molecular, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), Aptdo. 644, 48080, Bilbao, Spain.

Published: July 2019

AI Article Synopsis

  • Nucleoplasmin (NP) is a protein that helps manage how chromatin (the material that makes up chromosomes) condenses during different cellular activities.
  • NP interacts with histone octamers to form a complex that keeps histones tightly packed together, preventing them from separating.
  • The ability of NP to transfer histone octamers to DNA to form nucleosomes suggests it plays an important role in regulating access to genetic material in cells.

Article Abstract

Nucleoplasmin (NP) is a pentameric histone chaperone that regulates the condensation state of chromatin in different cellular processes. We focus here on the interaction of NP with the histone octamer, showing that NP could bind sequentially the histone components to assemble an octamer-like particle, and crosslinked octamers with high affinity. The three-dimensional reconstruction of the NP/octamer complex generated by single-particle cryoelectron microscopy, revealed that several intrinsically disordered tail domains of two NP pentamers, facing each other through their distal face, encage the histone octamer in a nucleosome-like conformation and prevent its dissociation. Formation of this complex depended on post-translational modification and exposure of the acidic tract at the tail domain of NP. Finally, NP was capable of transferring the histone octamers to DNA in vitro, assembling nucleosomes. This activity may have biological relevance for processes in which the histone octamer must be rapidly removed from or deposited onto the DNA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6602930PMC
http://dx.doi.org/10.1038/s41598-019-45726-7DOI Listing

Publication Analysis

Top Keywords

histone octamer
12
histone octamers
8
octamers dna
8
histone
7
structural insights
4
insights ability
4
ability nucleoplasmin
4
nucleoplasmin assemble
4
assemble chaperone
4
chaperone histone
4

Similar Publications

The nucleosome is the fundamental structural unit of chromosome fibers. A DNA wraps around a histone octamer to form a nucleosome, while neighboring nucleosomes interact to form higher-order structures and fit gigabase-long DNAs into a small volume of the nucleus. Nucleosomes interrupt the access of transcription factors to a genomic region, and provide regulatory controls of gene expression.

View Article and Find Full Text PDF

Structural insights into how Cas9 targets nucleosomes.

Nat Commun

December 2024

Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.

The CRISPR-associated endonuclease Cas9 derived from prokaryotes is used as a genome editing, which targets specific genomic loci by single guide RNAs (sgRNAs). The eukaryotes, the target of genome editing, store their genome DNA in chromatin, in which the nucleosome is a basic unit. Despite previous structural analyses focusing on Cas9 cleaving free DNA, structural insights into Cas9 targeting of DNA within nucleosomes are limited, leading to uncertainties in understanding how Cas9 operates in the eukaryotic genome.

View Article and Find Full Text PDF

8-oxoguanine (8-oxoG) is a common oxidative DNA lesion that causes G > T substitutions. Determinants of local and regional differences in 8-oxoG-induced mutability across genomes are currently unknown. Here, we show DNA oxidation induces G > T substitutions and insertion/deletion (INDEL) mutations in human cells and cancers.

View Article and Find Full Text PDF

Conformational switching of Arp5 subunit regulates INO80 chromatin remodeling.

Nucleic Acids Res

December 2024

Department of Epigenetics and Molecular Carcinogenesis, UT MD Anderson Cancer Center, 1901 East Rd., Houston, TX 77054, USA.

The INO80 chromatin remodeler is a versatile enzyme capable of several functions, including spacing nucleosomes equal distances apart, precise positioning of nucleosomes based on DNA shape/sequence and exchanging histone dimers. Within INO80, the Arp5 subunit plays a central role in INO80 remodeling, evidenced by its interactions with the histone octamer, nucleosomal and extranucleosomal DNA, and its necessity in linking INO80's ATPase activity to nucleosome movement. We find two distinct regions of Arp5 binding near the acidic pocket of nucleosomes.

View Article and Find Full Text PDF

To explore the specific role and molecular mechanism of octamer-binding transcription factor 4 (Oct4) in promoting the progression of esophageal squamous cell carcinoma and radioresistance. The Gene Expression Profile Data Dynamic Analysis (GEPIA) database was used to analyze the expression differences of the Oct4 gene in different types of tumor tissues and their corresponding adjacent normal tissues. The clinical data and surgical resection tissue specimens of 196 patients with esophageal squamous cell carcinoma who received surgery combined with radiotherapy at Henan Provincial Chest Hospital from January 2013 to May 2022 were collected.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!