Background/aim: The novel cytidine analog RX-3117, which is activated by uridine-cytidine kinase 2 (UCK2), shows encouraging activity in pancreatic and bladder cancer Phase IIa studies. In this study we highlight the potential role of UCK2 as a biomarker for selecting patients for RX-3117 treatment.
Patients And Methods: The online genomics analysis and visualization platform, R2, developed by the Oncogenomics department at the AMC (Amsterdam, The Netherlands) was used for in silico UCK2-mRNA correlation with overall survival of pancreatic cancer patients, while UCK2 protein expression was evaluated by immunohistochemistry on pancreatic tumor formalin-fixed-paraffin-embedded sections from independent pancreatic cancer patients. mRNA expression was also determined for SUIT-2, PANC-1 and PDAC-3. Lastly, the drug sensitivity to RX-3117 was investigated using the Sulforhodamine-B cytotoxicity assay.
Results: The in silico data showed that a high UCK2-mRNA expression was correlated with a shorter overall survival in pancreatic cancer patients. Moreover, UCK2 protein expression was high in 21/25 patients, showing a significantly shorter mean. Overall Survival (8.4 versus 34.3 months, p=0.045). Sensitivity to RX-3117 varied between 0.6 and 11 μM.
Conclusion: Pancreatic cancer cells are sensitive to pharmacologically achievable RX-3117 concentrations and UCK2 might be exploited as a biomarker for patient treatment selection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.21873/anticanres.13508 | DOI Listing |
Cancer Cytopathol
February 2025
Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA.
Background: Major mutations (e.g., KRAS, GNAS, TP53, SMAD4) in pancreatic cyst fluid (PCF) are useful for classifying and risk stratifying certain cyst types, particularly in cases with nondiagnostic cytology.
View Article and Find Full Text PDFUnited European Gastroenterol J
January 2025
"Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.
The rising incidence of pancreatic diseases, including acute and chronic pancreatitis and various pancreatic neoplasms, poses a significant global health challenge. Pancreatic ductal adenocarcinoma (PDAC) for example, has a high mortality rate due to late-stage diagnosis and its inaccessible location. Advances in imaging technologies, though improving diagnostic capabilities, still necessitate biopsy confirmation.
View Article and Find Full Text PDFJ Exp Clin Cancer Res
January 2025
Department of Hepato-Biliary-Pancreatic Surgery, General Surgery, Huadong Hospital, Fudan University, Shanghai, 200040, PR China.
Purpose: Glucose starvation induces the accumulation of disulfides and F-actin collapse in cells with high expression of SLC7A11, a phenomenon termed disulfidptosis. This study aimed to confirm the existence of disulfidptosis in pancreatic ductal adenocarcinoma (PDAC) and elucidate the role of Cancer Susceptibility 8 (CASC8) in this process.
Methods: The existence of disulfidptosis in PDAC was assessed using flow cytometry and F-actin staining.
Sci Rep
January 2025
State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Pathology, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China.
Delta-like protein (DLL3) is a novel therapeutic target. DLL3 expression in gastroenteropancreatic neuroendocrine tumors (GEP-NECs) is poorly understood, complicating the distinction between well-differentiated neuroendocrine tumors G3 (NET G3) and poorly differentiated NEC. DLL3 immunohistochemistry (IHC) was performed on 248 primary GEP-NECs, correlating with clinicopathological parameters, NE markers, PD-L1, Ki67 index, and prognosis.
View Article and Find Full Text PDFSurgery
January 2025
Division of Surgical Oncology, Lehigh Valley Topper Cancer Institute, Allentown, PA. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!