The nitroimidazole DNDI-0690 is a clinical drug candidate for visceral leishmaniasis (VL) that also shows potent and activity against cutaneous leishmaniasis (CL). To support further development of this compound into a patient-friendly oral or topical formulation for the treatment of CL, we investigated the free drug exposure at the dermal site of infection and subsequent elimination of the causative pathogen. This study evaluates the pharmacokinetics (PK) and pharmacodynamics (PD) of DNDI-0690 in mouse models of CL. Skin microdialysis and Franz diffusion cell permeation studies revealed that DNDI-0690 permeated poorly (<1%) into the skin lesion upon topical drug application (0.063% [wt/vol], 30 μl). In contrast, a single oral dose of 50 mg/kg of body weight resulted in the rapid and nearly complete distribution of protein-unbound DNDI-0690 from the plasma into the infected dermis (ratio of the area under the curve [0 to 6 h] of the free DNDI-0690 concentration in skin tissue to blood [AUC/AUC] is greater than 80%). Based on bioluminescence imaging, two doses of 50 mg/kg DNDI-0690 were sufficient to reduce the parasite load by 100-fold, while 6 such doses were needed to achieve similar killing of ; this was confirmed by quantitative PCR. The combination of rapid accumulation and potent activity in the -infected dermis indicates the potential of DNDI-0690 as a novel oral treatment for CL.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6709472PMC
http://dx.doi.org/10.1128/AAC.00829-19DOI Listing

Publication Analysis

Top Keywords

pharmacokinetics pharmacodynamics
8
nitroimidazole dndi-0690
8
dndi-0690 mouse
8
mouse models
8
cutaneous leishmaniasis
8
pharmacodynamics nitroimidazole
4
dndi-0690
4
models cutaneous
4
leishmaniasis nitroimidazole
4
dndi-0690 clinical
4

Similar Publications

Background: Dexamethasone has proven life-saving in severe acute respiratory syndrome (SARS) and COVID-19 cases. However, its systemic administration is accompanied by serious side effects. Inhalation delivery of dexamethasone (Dex) faces challenges such as low lung deposition, brief residence in the respiratory tract, and the pulmonary mucus barrier, limiting its clinical use.

View Article and Find Full Text PDF

Curcumin, a bioactive compound derived from the rhizome of L., has garnered significant attention for its potent anticancer properties. Despite its promising therapeutic potential, its poor bioavailability, rapid metabolism, and low water solubility hinder curcumin's clinical application.

View Article and Find Full Text PDF

Long-acting and extended-release drug delivery strategies have greatly improved treatment for a variety of medical conditions. Special populations, specifically infants, children, young people, and pregnant and postpartum women, could greatly benefit from access to these strategies but are often excluded from clinical trials. We conducted a systematic review of all clinical studies involving the use of a long-acting intramuscular injection or implant in infants, children, young people, and pregnant and postpartum people.

View Article and Find Full Text PDF

This in vivo study introduces a newly developed spirooxindole derivative that is deemed safe and effective as a potential targeted therapy for various cancers. Extensive in vivo investigations, including histopathology, immunohistochemistry, and molecular biology, validated its potential for further preclinical and clinical exploration, necessitating comprehensive examinations of its bioavailability, pharmacodynamics, and pharmacokinetics. Additionally, this study involves the development of a commercially viable proniosomal drug delivery system for the compound, facilitating controlled drug release.

View Article and Find Full Text PDF

Whole-Body Physiologically Based Pharmacokinetic Modeling of GalNAc-Conjugated siRNAs.

Pharmaceutics

January 2025

Department of Pharmaceutical Bioscience, Translational Drug Discovery and Development, Uppsala University, SE-75124 Uppsala, Sweden.

: N-acetyl-galactosamine small interfering RNAs (GalNAc-siRNA) are an emerging class of drugs due to their durable knockdown of disease-related proteins. Direct conjugation of GalNAc onto the siRNA enables targeted uptake into hepatocytes via GalNAc recognition of the Asialoglycoprotein Receptor (ASGPR). With a transient plasma exposure combined with a prolonged liver half-life, GalNAc-siRNA exhibits distinct disposition characteristics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!