Analysis on Characteristics of ZnO Surface Acoustic Wave with and without Micro-Structures.

Micromachines (Basel)

School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan.

Published: June 2019

In this paper, we fabricate a surface acoustic wave (SAW) device with micro-structures on a zinc oxide (ZnO) thin film and measure its signal response. The manufacturing processes of the SAW device include the fabrication of micro-structures of a SAW element and its interdigital transducer by silicon micro-machining and the fabrication of a thin film of ZnO by RF magnetron sputtering. We, then, measure the SAW properties. This research investigates the properties of sputtered thin films for various amounts of O/(Ar + O) using Zn and ZnO targets. Regardless of target, the growth rate of the ZnO thin film decreases as the oxygen content increases. When the SAW is sputtered ZnO thin film using 30% oxygen, the digital signal of the SAW has better performance. The measurement signal of the SAW with micro-structures is similar to that without micro-structures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6680403PMC
http://dx.doi.org/10.3390/mi10070434DOI Listing

Publication Analysis

Top Keywords

thin film
16
zno thin
12
surface acoustic
8
acoustic wave
8
zno
6
micro-structures
5
thin
5
analysis characteristics
4
characteristics zno
4
zno surface
4

Similar Publications

Ferroelectric Optical Memristors Enabled by Non-Volatile Electro-Optic Effect.

Adv Mater

January 2025

Institute of Modern Optics & Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Nankai University, Tianjin, 300350, P. R. China.

Memristors enable non-volatile memory and neuromorphic computing. Optical memristors are the fundamental element for programmable photonic integrated circuits due to their high-bandwidth computing, low crosstalk, and minimal power consumption. Here, an optical memristor enabled by a non-volatile electro-optic (EO) effect, where refractive index modulation under zero field is realized by deliberate control of domain alignment in the ferroelectric material Pb(MgNb)O-PbTiO(PMN-PT) is proposed.

View Article and Find Full Text PDF

Investigation of electrochromic performances of multicolor VO devices fabricated at low processing temperature.

Sci Rep

January 2025

Centre for Advanced Devices and Systems, Faculty of Engineering, Multimedia University, Persiaran Multimedia, 63100, Cyberjaya, Selangor, Malaysia.

In recent decades, poorly insulated windows have increased the energy consumption of heating and cooling systems, thus contributing to excessive carbon dioxide emissions and other related pollution issues. From this perspective, the electrochromic (EC) windows could be a tangible solution as the indoor conditions are highly controllable by these smart devices even at a low applied voltage. Literally, vanadium pentoxide (VO) is a renowned candidate for the EC application due to its multicolor appearance and substantial lithium insertion capacity.

View Article and Find Full Text PDF

Doxorubicin is an anthracycline antibiotic widely used in cancer therapy. However, its cytotoxic properties affect both cancerous and healthy cells. Combining doxorubicin with antioxidants such as ferulic acid reduces its side effects, while simultaneously enhancing therapeutic effectiveness.

View Article and Find Full Text PDF

In conventional nondispersive infrared (NDIR) gas sensors, a wide-spectrum IR source or detector must be combined with a narrowband filter to eliminate the interference of nontarget gases. Therefore, the multiplexed NDIR gas sensor requires multiple pairs of narrowband filters, which is not conducive to miniaturization and integration. Although plasmonic metamaterials or multilayer thin-film structures are widely applied in spectral absorption filters, realizing high-performance, large-area, multiband, and compact filters is rather challenging.

View Article and Find Full Text PDF

Microscale Electrical Resistivity Measurements to Investigate Particle Distribution.

Langmuir

January 2025

Materials Science and Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States.

The functional performance of a particulate thin film depends greatly on the particle distribution that forms during drying. In situ methods for monitoring the impact of different processing parameters on the distribution of particles currently require expensive and specialized equipment. This work addresses this gap by miniaturizing a geophysical prospecting method to thin-film applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!