Salt Inducible Kinase Signaling Networks: Implications for Acute Kidney Injury and Therapeutic Potential.

Int J Mol Sci

Biochemistry Dept, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 955 Main Street Suite 4102, Buffalo, NY 14203, USA.

Published: June 2019

A number of signal transduction pathways are activated during Acute Kidney Injury (AKI). Of particular interest is the Salt Inducible Kinase (SIK) signaling network, and its effects on the Renal Proximal Tubule (RPT), one of the primary targets of injury in AKI. The SIK1 network is activated in the RPT following an increase in intracellular Na (Na), resulting in an increase in Na,K-ATPase activity, in addition to the phosphorylation of Class IIa Histone Deacetylases (HDACs). In addition, activated SIKs repress transcriptional regulation mediated by the interaction between cAMP Regulatory Element Binding Protein (CREB) and CREB Regulated Transcriptional Coactivators (CRTCs). Through their transcriptional effects, members of the SIK family regulate a number of metabolic processes, including such cellular processes regulated during AKI as fatty acid metabolism and mitochondrial biogenesis. SIKs are involved in regulating a number of other cellular events which occur during AKI, including apoptosis, the Epithelial to Mesenchymal Transition (EMT), and cell division. Recently, the different SIK kinase isoforms have emerged as promising drug targets, more than 20 new SIK2 inhibitors and activators having been identified by MALDI-TOF screening assays. Their implementation in the future should prove to be important in such renal disease states as AKI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6651122PMC
http://dx.doi.org/10.3390/ijms20133219DOI Listing

Publication Analysis

Top Keywords

salt inducible
8
inducible kinase
8
acute kidney
8
kidney injury
8
injury aki
8
aki
5
kinase signaling
4
signaling networks
4
networks implications
4
implications acute
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!