Tissue-type plasminogen activator (t-PA) is a mosaic protein containing several distinct structural domains attached to the serine protease catalytic unit present at its COOH terminus. To investigate structure-function relationships in t-PA, we deleted the NH2-terminal domains, finger and epidermal growth factor, by genetic engineering. The genes for the parent and mutant t-PA were expressed in a bovine papilloma virus-dependent mammalian cell system. The secreted proteins were purified to homogeneity. The mutant protein was processed to the expected size of about 60 kDa compared to approximately 68 kDa for the parent t-PA, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fibrin autography. While the mutant t-PA had amidolytic activity comparable to native t-PA, it did not bind appreciably to fibrin. Consequently, fibrin-dependent enzymic activity, i.e. plasminogen activation in the presence of soluble fibrin and fibrinolysis were lower than with native recombinant t-PA. The effect of deletion of NH2-terminal domains on the plasma half-life (t1/2) was investigated by injecting native and mutant t-PA into mice. While the majority of the t-PA disappeared initially with a t1/2 of about 2 min, mutant t-PA cleared at a much slower rate with t1/2 of about 50 min. These findings suggest that the NH2-terminal domains of t-PA not only determine its specificity for binding to fibrin but also mediate its clearance from plasma in vivo. Furthermore, the catalytic unit in t-PA seems to function autonomously.

Download full-text PDF

Source

Publication Analysis

Top Keywords

nh2-terminal domains
16
mutant t-pa
16
t-pa
12
tissue-type plasminogen
8
plasminogen activator
8
deletion nh2-terminal
8
catalytic unit
8
t1/2 min
8
domains
5
mutant
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!