The many functions of phosphoinositides in cytosolic signaling were extensively studied; however, their activities in the cell nucleus are much less clear. In this review, we summarize data about their nuclear localization and metabolism, and review the available literature on their involvements in chromatin remodeling, gene transcription, and RNA processing. We discuss the molecular mechanisms via which nuclear phosphoinositides, in particular phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P2), modulate nuclear processes. We focus on PI(4,5)P2's role in the modulation of RNA polymerase I activity, and functions of the nuclear lipid islets-recently described nucleoplasmic PI(4,5)P2-rich compartment involved in RNA polymerase II transcription. In conclusion, the high impact of the phosphoinositide-protein complexes on nuclear organization and genome functions is only now emerging and deserves further thorough studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6678639PMC
http://dx.doi.org/10.3390/cells8070649DOI Listing

Publication Analysis

Top Keywords

genome functions
8
rna polymerase
8
nuclear
6
nuclear phosphoinositides-versatile
4
phosphoinositides-versatile regulators
4
regulators genome
4
functions
4
functions functions
4
functions phosphoinositides
4
phosphoinositides cytosolic
4

Similar Publications

Objective: The goal of this study was to assess the additive value of considering type 2 diabetes (T2D) polygenic risk score (PRS) in addition to family history for T2D prediction.

Research Design And Methods: Data were obtained from the All of Us (AoU) research database. First-degree T2D family history was self-reported on the personal family history health questionnaire.

View Article and Find Full Text PDF

Designing binders to target undruggable proteins presents a formidable challenge in drug discovery. In this work, we provide an algorithmic framework to design short, target-binding linear peptides, requiring only the amino acid sequence of the target protein. To do this, we propose a process to generate naturalistic peptide candidates through Gaussian perturbation of the peptidic latent space of the ESM-2 protein language model and subsequently screen these novel sequences for target-selective interaction activity via a contrastive language-image pretraining (CLIP)-based contrastive learning architecture.

View Article and Find Full Text PDF

Lysosomal storage diseases (LSDs) comprise ~50 monogenic disorders marked by the buildup of cellular material in lysosomes, yet systematic global molecular phenotyping of proteins and lipids is lacking. We present a nanoflow-based multiomic single-shot technology (nMOST) workflow that quantifies HeLa cell proteomes and lipidomes from over two dozen LSD mutants. Global cross-correlation analysis between lipids and proteins identified autophagy defects, notably the accumulation of ferritinophagy substrates and receptors, especially in and mutants, where lysosomes accumulate cholesterol.

View Article and Find Full Text PDF

A change language for ontologies and knowledge graphs.

Database (Oxford)

January 2025

Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, One Cyclotron Rd., Berkeley, CA 94720, United States.

Ontologies and knowledge graphs (KGs) are general-purpose computable representations of some domain, such as human anatomy, and are frequently a crucial part of modern information systems. Most of these structures change over time, incorporating new knowledge or information that was previously missing. Managing these changes is a challenge, both in terms of communicating changes to users and providing mechanisms to make it easier for multiple stakeholders to contribute.

View Article and Find Full Text PDF

Standardized pipelines support and facilitate integration of diverse datasets at the Rat Genome Database.

Database (Oxford)

January 2025

Rat Genome Database, Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226, United States.

The Rat Genome Database (RGD) is a multispecies knowledgebase which integrates genetic, multiomic, phenotypic, and disease data across 10 mammalian species. To support cross-species, multiomics studies and to enhance and expand on data manually extracted from the biomedical literature by the RGD team of expert curators, RGD imports and integrates data from multiple sources. These include major databases and a substantial number of domain-specific resources, as well as direct submissions by individual researchers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!