Phosphaturic mesenchymal tumor (PMT) is a rare neoplasm that ectopically secretes fibroblast growth factor 23, a bone cell-derived protein that regulates phosphate homeostasis. The overproduction of fibroblast growth factor 23 causes a paraneoplastic syndrome characterized by hyperphosphaturia, hypophosphatemia, hypovitaminosis D, and vitamin D refractory rickets/osteomalacia, effects that disappear with tumor removal. The PMT may occur in several anatomic regions, mainly in the limbs, usually involving both soft tissue and bone. Acral locations occur in 10% to 15% of the cases, mostly in the feet, with 95 cases reported in this anatomic region to date. We report a case of a PMT in a young adult male who presented in 2007 with the classic constellation of signs and symptoms. A small soft-tissue tumor was detected in his right heel, 3 years after exhaustively seeking for it by various imaging techniques performed at different institutions. Before the tumor was detected, attempts to manage this patient's osteomalacia with phosphate and vitamin D (both calcitriol and ergocalciferol) supplementation were unsuccessful. Following surgical resection, the patient experienced prompt correction of the phosphaturia and gradual reconstitution of his bone mineralization. The pathologic diagnosis was (benign) PMT, mixed connective tissue type. In 2019, 12 years after resection, the patient is asymptomatic, and his bone mineral homeostasis has been restored.

Download full-text PDF

Source
http://dx.doi.org/10.1097/PAP.0000000000000240DOI Listing

Publication Analysis

Top Keywords

phosphaturic mesenchymal
8
mesenchymal tumor
8
soft tissue
8
report case
8
fibroblast growth
8
growth factor
8
tumor detected
8
resection patient
8
tumor
5
tumor soft
4

Similar Publications

Tumor-induced osteomalacia is characterized by hypophosphatemia and fragility fractures caused by fibroblast growth factor 23 (FGF23)-producing tumors. We report a case of tumor-induced osteomalacia in which the tumor location could be determined by gallium 68 (Ga)-DOTATOC positron emission tomography (PET)/computed tomography (CT). A 74-year-old woman had recurrent fractures and bone pain.

View Article and Find Full Text PDF

Phosphaturic mesenchymal tumor (PMT) is a rare benign mesenchymal tumor characterized by excessive secretion of fibroblast growth factor 23 (FGF23), leading to phosphate loss and systemic osteomalacia. Despite recent progress in PMT research, no consensus on diagnosis and treatment guidelines has been established. This case series describes the clinical and pathological features of six pathologically confirmed PMT patients treated at the Third Affiliated Hospital of Sun Yat-sen University from 2010 to 2024, aiming to provide new insights for the management of this condition.

View Article and Find Full Text PDF

Context: TIO, a paraneoplastic disorder characterised by renal phosphate wasting, is cured by surgical removal of the culprit tumour. Despite correct localization, some remain refractory to intervention, resulting in substantial long-term medical complications.

Aim: We aim to identify risk factors associated with a refractory outcome.

View Article and Find Full Text PDF

Tumor-induced osteomalacia (TIO) is a rare paraneoplastic syndrome caused by hypersecretion of fibroblast growth factor 23 (FGF23) by typically benign phosphaturic mesenchymal tumors (PMTs). FGF23 excess causes chronic hypophosphatemia through renal phosphate losses and decreased production of 1,25-dihydroxy-vitamin-D. TIO presents with symptoms of chronic hypophosphatemia including fatigue, bone pain, weakness, and fractures.

View Article and Find Full Text PDF

Tumor-induced osteomalacia (TIO) is a rare paraneoplastic syndrome characterized by hypophosphatemia caused by excessive secretion of fibroblast growth factor-23 (FGF-23) by tumors. This leads to impaired bone mineralization and, ultimately, osteomalacia. The most common underlying cause is a phosphaturic mesenchymal tumor (PMT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!