In vitro Engineering of a Skin Substitute Based on Adipose-Derived Stem Cells.

Cells Tissues Organs

Surgical, Medical and Dental Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy.

Published: March 2020

In the field of wound healing, stem cell-based strategies are gaining importance for their regenerative potential. Adipose-derived stem cells (ADSCs) are a particular subset of mesenchymal stem cells present in the stromal-vascular fraction of the adipose tissue, today considered very attractive for their relative abundance and accessibility in the human body. However, ADSCs are still not routinely used in normal clinical practice. Several studies have also reported ADSC transplantation in association with biomaterials in an attempt to enhance the local retention and growth rate of the cells. The aim of our study was to evaluate the ability of ADSCs to build a dermal scaffold to be potentially used as a dermal substitute in the field of wound healing, with optimal biocompatibility and mechanical properties. ADSCs were defined as CD90-, CD73-, and CD105-positive cells. ADSCs turned out to be capable of secreting all the main components of the extracellular matrix (ECM) upon stimulation, thus efficiently producing a collagen and fibronectin-containing dermal matrix. We also checked whether the ADSC-produced dermal scaffold could be seeded with keratinocytes. The scaffolding material directly produced by ADSCs has several advantages when compared to the commercially available ones: it is easily obtained from the patients and it is 100% biocompatible and supports cell-ECM interaction. Moreover, it represents a possible powerful therapeutic tool for patients with chronic ulcers since it appears to be potentially grafted with keratinocytes layers, thus bypassing the classical two-step grafting procedure.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000501071DOI Listing

Publication Analysis

Top Keywords

stem cells
12
adipose-derived stem
8
field wound
8
wound healing
8
cells adscs
8
dermal scaffold
8
adscs
6
cells
5
vitro engineering
4
engineering skin
4

Similar Publications

Background: The common drugs used for the treatment of Newly Diagnosed Multiple Myeloma (NDMM) include bortezomib and lenalidomide, but the adverse effects of lenalidomide cannot be ignored, especially when it is used in the initial therapy.

Methods: This retrospective study evaluated the efficacy and safety of a modified DVD regimen (pegylated liposomal doxorubicin, bortezomib, and dexamethasone) followed by lenalidomide in the treatment of NDMM. A total of 40 NDMM patients were treated with a reduced dose of pegylated liposomal doxorubicin (20 mg/m) on day 1, subcutaneous bortezomib (1.

View Article and Find Full Text PDF

Advances in RNA editing in hematopoiesis and associated malignancies.

Blood

January 2025

State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College; Center for Stem Cell Medicine,, Tianjin, China.

Adenosine-to-inosine (A-to-I) RNA editing is a prevalent RNA modification essential for cell survival. The process is catalyzed by the Adenosine Deaminase Acting on RNA (ADAR) enzyme family that converts adenosines in double-stranded RNAs (dsRNAs) into inosines, which are read as guanosines during translation. Deep sequencing has helped to reveal that A-to-I editing occurs across various types of RNAs to affect their functions.

View Article and Find Full Text PDF

A single-cell atlas of the Culex tarsalis midgut during West Nile virus infection.

PLoS Pathog

January 2025

Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA.

The mosquito midgut functions as a key interface between pathogen and vector. However, studies of midgut physiology and virus infection dynamics are scarce, and in Culex tarsalis-an extremely efficient vector of West Nile virus (WNV)-nonexistent. We performed single-cell RNA sequencing on Cx.

View Article and Find Full Text PDF

Whipworms (Trichuris spp) are ubiquitous parasites of humans and domestic and wild mammals that cause chronic disease, considerably impacting human and animal health. Egg hatching is a critical phase in the whipworm life cycle that marks the initiation of infection, with newly hatched larvae rapidly migrating to and invading host intestinal epithelial cells. Hatching is triggered by the host microbiota; however, the physical and chemical interactions between bacteria and whipworm eggs, as well as the bacterial and larval responses that result in the disintegration of the polar plug and larval eclosion, are not completely understood.

View Article and Find Full Text PDF

Purpose: Rose Bengal Photodynamic Therapy (RB-PDT) offers dual therapeutic benefits by enhancing corneal stiffness and providing antibacterial activity, presenting significant potential for patients with keratoconus complicated by keratitis. Our purpose was to assess the effect of rose bengal photodynamic therapy (RB-PDT) on the expression of pro-inflammatory cytokines and chemokines, as well as on extracellular matrix (ECM)-related molecules, in lipopolysaccharide (LPS)-induced inflammation of keratoconus human corneal fibroblasts (KC-HCFs). Additionally, the involvement of the mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) signaling pathways which are downstream of the Toll-like receptor 4 (TLR4) pathway were examined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!