Wall shear stress, the frictional force of blood flow tangential to an artery lumen, has been demonstrated in multiple studies to influence aneurysm formation and risk of rupture. In this article, the authors review the ways in which shear stress may influence aneurysm growth and rupture through changes in the vessel wall endothelial cells, smooth-muscle cells, and surrounding adventitia, and they discuss shear stress-induced pathways through which these changes occur.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3171/2019.4.FOCUS19225 | DOI Listing |
Active fluids are driven out of thermodynamic equilibrium by internally generated forces, causing complex patterns of motion. Even when both the forces and motion are measurable, it is not yet possible to relate the two, because the sources of energy injection and dissipation are often unclear. Here, we study how energy is transferred by developing a method to measure viscosity from the shear stresses and strain rates within an epithelial cell monolayer.
View Article and Find Full Text PDFSci Rep
January 2025
Institute for Plasma Research, HBNI, Bhat, Gandhinagar, 382428, India.
The stability of kinetic-level convection cells (wherein the magnitude of macroscopic and microscopic velocities are of same order) is studied in a two-dimensional Yukawa liquid under the effect of microscopic velocity perturbations. Our numerical experiments demonstrate that for a given system aspect ratio β viz., the ratio of system length [Formula: see text] to its height [Formula: see text] and number of convective rolls initiated [Formula: see text], the fate of the convective cells is decided by [Formula: see text].
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing, 100081, China.
Loess is extensively developed on both sides of the Longwu River, a tributary of the Yellow River, Tongren County, Qinghai Province. The engineering geological characteristics are complex, and landslide disasters are highly developed. Based on field geological surveys and physical property analysis of the loess in this area, this study analyzes the influence of water content, consolidation pressure, and soil disturbance on the dynamic characteristics of loess using GDS dynamic triaxial tests.
View Article and Find Full Text PDFSci Rep
January 2025
Mechanical Engineering, Carnegie Mellon University, Pittsburgh, 15213, USA.
Local hemodynamics play an essential role in the initiation and progression of coronary artery disease. While vascular geometry alters local hemodynamics, the relationship between vascular structure and hemodynamics is poorly understood. Previous computational fluid dynamics (CFD) studies have explored how anatomy influences plaque-promoting hemodynamics.
View Article and Find Full Text PDFJ Atheroscler Thromb
January 2025
Department of Neurology, National Cerebral and Cardiovascular Center.
Aim: Branch atheromatous disease (BAD), characterized by the occlusion of perforating branches near the orifice of a parent artery, often develops early neurological deterioration because the mechanisms underlying BAD remain unclear. Abnormal wall shear stress (WSS) is strongly associated with endothelial dysfunction and plaque growth or rupture. Therefore, we hypothesized that computational fluid dynamics (CFD) modeling could detect differences in WSS between BAD and small-vessel occlusion (SVO), both of which result from perforating artery occlusion/stenosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!