Synaptosomal-associated protein of 23 kDa (SNAP-23) plays an important role during regulated exocytosis of various inflammatory mediators, stored in secretory granules, from mast cells in response to physiological triggers. It is however synthesized as a soluble protein, and the mechanisms by which free SNAP-23 gets peripherally associated with membrane for the regulation of exocytosis, are poorly defined. SNAP-23 contains a hydrophobic domain with five closely spaced cysteines which get palmitoylated, and we show that SNAP-23 cysteine mutants show differential membrane association when transfected in rat basophilic leukemia (RBL) mast cells. SNAP-23 Cys mutant, devoid of all five cysteines, and SNAP-23 P119A (proline to alanine) mutant, that likely interferes with palmitoylation of SNAP-23 by palmitoyl transferases are completely cytosolic. Mutating specific cysteines (Cys; C) to leucine or phenylalanine (L or F; retains hydrophobicity but lacks palmitoylation) partially decreases the membrane association of SNAP-23 which is further hampered by alanine (A; has lesser hydrophobicity, and lacks palmitoylation) mutation at C79, C80 or C83 position. Cloning a transmembrane domain MDR3 from multidrug resistance protein into SNAP-23 Cys mutant is able to partially restore its membrane association. Regulated exocytosis studies using co-transfected human growth hormone (hGH) secretion reporter plasmid revealed that overexpression of SNAP-23 Cys and P119A mutants significantly inhibits the overall extent of exocytosis from RBL mast cells, whereas expression of SNAP-23 Cys-MDR3 fusion protein is able to restore exocytosis. These results establish that the cysteine-rich domain of SNAP-23 regulates its membrane association and thereby also regulates exocytosis from mast cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8258691 | PMC |
http://dx.doi.org/10.1016/j.bbamcr.2019.06.015 | DOI Listing |
Quant Plant Biol
September 2024
Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile.
Ion homeostasis is a crucial process in plants that is closely linked to the efficiency of nutrient uptake, stress tolerance and overall plant growth and development. Nevertheless, our understanding of the fundamental processes of ion homeostasis is still incomplete and highly fragmented. Especially at the mechanistic level, we are still in the process of dissecting physiological systems to analyse the different parts in isolation.
View Article and Find Full Text PDFClin Nephrol Case Stud
December 2024
Nephrology Center and the Okinaka Memorial Institute for Medical Research.
A 47-year-old woman with a 12-year history of anemia and high C-reactive protein (CRP) levels was admitted to our hospital with worsening fatigue and night sweats. She had high levels of immunoglobulin G (IgG; 4182 mg/dL), IgA (630.6 mg/dL), and CRP (7.
View Article and Find Full Text PDFFront Immunol
December 2024
Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
Acute pancreatitis (AP) is an inflammatory disease of the pancreas and a complex process involving multiple factors, with mitochondrial damage playing a crucial role. Mitochondrial dysfunction is now considered a key driver in the development of AP. This dysfunction often presents as increased oxidative stress, altered membrane potential and permeability, and mitochondrial DNA damage and mutations.
View Article and Find Full Text PDFTheranostics
January 2025
Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
The cascade of events leading to tumor formation includes induction of a tumor supporting neovasculature, as a primary hallmark of cancer. Developing vasculature is difficult to evaluate but can be captured using microfluidic chip technology and patient derived cells. Herein, we established an approach to investigate the mechanisms promoting tumor vascularization and vascular targeted therapies via co-culture of cancer spheroids and endothelial cells in a three dimensional environment.
View Article and Find Full Text PDFJ Phycol
January 2025
Department of Food & Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
Delta-6 fatty acid desaturases, which play key roles in the biosynthesis of polyunsaturated fatty acids (PUFAs), are membrane-associated enzymes that present significant challenges for isolation and purification, complicating their structural characterization. Here we report the identification and structure-function analysis of a novel Δ6 fatty acid desaturase (PmD6) from the marine alga Prorocentrum micans with substrate preference to α-linolenic acid (18:3n-3). Structural modeling revealed a mushroom-like structure of PmD6 formed by four transmembrane α-helices as a stem and three cytoplasmic domains as a cap.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!